Percolation critical exponents
{{Use American English|date = February 2019}}
{{Short description|Mathematical parameter in percolation theory}}
{{Use mdy dates|date = February 2019}}
{{cat more|Percolation theory}}
In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation.
Percolating systems have a parameter which controls the occupancy of sites or bonds in the system. At a critical value , the mean cluster size goes to infinity and the percolation transition takes place. As one approaches , various quantities either diverge or go to a constant value by a power law in , and the exponent of that power law is the critical exponent. While the exponent of that power law is generally the same on both sides of the threshold, the coefficient or "amplitude" is generally different, leading to a universal amplitude ratio.
Description
Thermodynamic or configurational systems near a critical point or a continuous phase transition become fractal, and the behavior of many quantities in such circumstances is described by universal critical exponents. Percolation theory is a particularly simple and fundamental model in statistical mechanics which has a critical point, and a great deal of work has been done in finding its critical exponents, both theoretically (limited to two dimensions) and numerically.
Critical exponents exist for a variety of observables, but most of them are linked to each other by exponent (or scaling) relations. Only a few of them are independent, and the choice of the fundamental exponents depends on the focus of the study at hand. One choice is the set motivated by the cluster size distribution, another choice is motivated by the structure of the infinite cluster. So-called correction exponents extend these sets, they refer to higher orders of the asymptotic expansion around the critical point.
Definitions of exponents
= Self-similarity at the percolation threshold =
Percolation clusters become self-similar precisely at the threshold density for sufficiently large length scales, entailing the following asymptotic power laws:
The fractal dimension relates how the mass of the incipient infinite cluster depends on the radius or another length measure, at and for large probe sizes, . Other notation: magnetic exponent and co-dimension .
The Fisher exponent characterizes the cluster-size distribution , which is often determined in computer simulations. The latter counts the number of clusters with a given size (volume) , normalized by the total volume (number of lattice sites). The distribution obeys a power law at the threshold, asymptotically as .
The probability for two sites separated by a distance to belong to the same cluster decays as or for large distances, which introduces the anomalous dimension . Also, and .
The exponent is connected with the leading correction to scaling, which appears, e.g., in the asymptotic expansion of the cluster-size distribution,
for . Also, .
For quantities like the mean cluster size , the corrections are controlled by the exponent .
The minimum or chemical distance or shortest-path exponent describes how the average minimum distance relates to the Euclidean distance , namely Note, it is more appropriate and practical to measure average , <> for a given . The elastic backbone has the same fractal dimension as the shortest path. A related quantity is the spreading dimension , which describes the scaling of the mass M of a critical cluster within a chemical distance as , and is related to the fractal dimension of the cluster by . The chemical distance can also be thought of as a time in an epidemic growth process, and one also defines where , and is the dynamical exponent. One also writes .
Also related to the minimum dimension is the simultaneous growth of two nearby clusters. The probability that the two clusters coalesce exactly in time scales as with .{{cite journal
| title = Exact critical exponent for the shortest-path scaling function in percolation
| last = Ziff
| first = R. M.
| year = 1999
| pages = L457–L459
| journal = J. Phys. A: Math. Gen.
| volume = 32
| issue = 43
| doi = 10.1088/0305-4470/32/43/101| arxiv = cond-mat/9907305
| bibcode = 1999JPhA...32L.457Z
| s2cid = 1605985
}}
The dimension of the backbone, which is defined as the subset of cluster sites
carrying the current when a voltage difference is applied between two sites far apart, is (or ). One also defines .
The fractal dimension of the random walk on an infinite incipient percolation cluster is given by .
The spectral dimension such that the average number of distinct sites visited in an -step random walk scales as .
= Critical behavior close to the percolation threshold =
The approach to the percolation threshold is governed by power laws again, which hold asymptotically close to :
The exponent describes the divergence of the correlation length as the percolation transition is approached, . The infinite cluster becomes homogeneous at length scales beyond the correlation length; further, it is a measure for the linear extent of the largest finite cluster. Other notation: Thermal exponent and dimension .
Off criticality, only finite clusters exist up to a largest cluster size , and the cluster-size distribution is smoothly cut off by a rapidly decaying function, . The exponent characterizes the divergence of the cutoff parameter, . From the fractal relation we have , yielding .
The density of clusters (number of clusters per site) is continuous at the threshold but its third derivative goes to infinity as determined by the exponent : , where represents the coefficient above and below the transition point.
The strength or weight of the percolating cluster, or , is the probability that a site belongs to an infinite cluster. is zero below the transition and is non-analytic. Just above the transition, , defining the exponent . plays the role of an order parameter.
The divergence of the mean cluster size introduces the exponent .
The gap exponent Δ is defined as Δ = 1/(β+γ) = 1/σ and represents the "gap" in critical exponent values from one moment to the next for .
The conductivity exponent describes how the electrical conductivity goes to zero in a conductor-insulator mixture, . Also, .
= Surface critical exponents =
The probability a point at a surface belongs to the percolating or infinite cluster for is .
The surface fractal dimension is given by .{{cite journal
| last = Stauffer
| first = D.
|author2= A. Aharony
| title = Density profile of the incipient infinite percolation cluster
| journal = International Journal of Modern Physics C
| volume = 10
| issue = 5
| year = 1999
| pages = 935–940
| doi = 10.1142/S0129183199000735| bibcode = 1999IJMPC..10..935S
}}
Correlations parallel and perpendicular to the surface decay as and .{{cite journal
| last = Binder
| first = K.
|author2= P. C. Hohenberg
| title = Phase Transitions and Static Spin Correlations in Ising Models with Free Surfaces
| journal = Physical Review B
| volume = 6
| issue = 9
| year = 1972
| pages = 3461–3487
| doi = 10.1103/PhysRevB.6.3461| bibcode = 1972PhRvB...6.3461B
| url = https://link.aps.org/doi/10.1103/PhysRevB.6.3461
}}
The mean size of finite clusters connected to a site in the surface is .{{cite thesis
|type=PhD Thesis
|last=De'Bell
|first=Keith
|date=1980
|title=Surface effects in percolation
|publisher=University of London
|last=Binder
|first=K.
|date=1981
|editor-last=Domb
|editor-first=C.
|editor2-last=Lebowitz
|editor2-first=J. L.
|title=Phase Transitions and Critical Phenomena, Volume 8
|publisher=Academic Press
|pages=1–144
|chapter=Critical Behaviour at Surfaces
|isbn=978-0122203084
}}
The mean number of surface sites connected to a site in the surface is .
Scaling relations
= Hyperscaling relations =
:
:
:
= Relations based on <math>\{\sigma, \tau\}</math> =
:
:
:
:
:
:
= Relations based on <math>\{d_\text{f}, \nu\}</math> =
:
:
:
:
= Conductivity scaling relations =
:
:
:
= Surface scaling relations =
:
:
| last = Lubensky
| first = T. C.
|author2= M. H. Rubin
| title = Critical phenomena in semi-infinite systems. I. expansion for positive extrapolation length
| journal = Physical Review B
| volume = 11
| issue = 11
| year = 1975
| pages = 4533–4546
| doi = 10.1103/PhysRevB.11.4533| bibcode = 1975PhRvB..11.4533L
| url = https://link.aps.org/doi/10.1103/PhysRevB.11.4533
}}
| last = Pleimling
| first = M
| title = Critical phenomena at perfect and non-perfect surfaces
| journal = Journal of Physics A: Mathematical and General
| volume = 37
| year = 2004
| issue = 19
| pages = R79–R115
| doi = 10.1088/0305-4470/37/19/R01
| arxiv = cond-mat/0402574
| s2cid = 15712212
}}
:
Exponents for standard percolation
class="wikitable" |
{{math|d}}
! {{math|1}}{{cite journal | last = Reynolds | first = P. J. |author2=H. E. Stanley |author3=W. Klein | title = Ghost fields, pair connectedness, and scaling: exact results in one-dimensional percolation | journal = Journal of Physics A: Mathematical and General | volume = 10 | issue = 11 | year = 1977 | pages = L203–L209 | url = https://doi.org/10.1088/0305-4470/10/11/007| doi = 10.1088/0305-4470/10/11/007 | bibcode = 1977JPhA...10L.203R }} ! {{math|2}} ! {{math|3}} ! {{math|4}} ! {{math|5}} ! {{math|6 – ε}}{{cite journal | title = Percolation theory | last = Essam | first = J. W. | year = 1980 | pages = 833–912 | journal = Rep. Prog. Phys. | volume = 43 | issue = 7 | url = http://stacks.iop.org/0034-4885/43/i=7/a=001|bibcode = 1980RPPh...43..833E |doi = 10.1088/0034-4885/43/7/001| s2cid = 250755965 }} | last = Harris | first = A. B. |author2= T. C. Lubensky |author3= W. K. Holcomb |author4= C. Dasgupta | title = Renormalization-group approach to percolation problems | journal = Physical Review Letters | volume = 35 | issue = 6 | year = 1975 | pages = 327–330 | doi = 10.1103/PhysRevLett.35.327| bibcode = 1975PhRvL..35..327H| url = https://repository.upenn.edu/cgi/viewcontent.cgi?article=1329&context=physics_papers }} | last = Priest | first = R. G. |author2= T. C. Lubensky | title = Critical properties of two tensor models with application to the percolation problem | journal = Physical Review B | volume = 13 | issue = 9 | year = 1976 | pages = 4159–4171 | doi = 10.1103/PhysRevB.13.4159| bibcode = 1976PhRvB..13.4159P | url = https://link.aps.org/doi/10.1103/PhysRevB.13.4159 }} {{refn|group=note|For higher-order terms in the expansions, see.{{cite journal | last = Alcantara Bonfim | first = 0. F. | author2 = J E Kirkham | author3 = A J McKane | title = Critical exponents for the percolation problem and the Yang-Lee edge singularity | journal = J. Phys. A: Math. Gen. | volume = 14 | issue = 9 | pages = 2391–2413 | year = 1981 | doi = 10.1088/0305-4470/14/9/034 | bibcode =1981JPhA...14.2391D | doi-access = free | last = Borinsky | first = M | author2=J. A. Gracey | author3=M. V. Kompaniets | author4=O. Schnetz | title = Five loop renormalization of phi^3 theory with applications to the Lee-Yang edge singularity and percolation theory | journal = Physical Review D | year = 2021 | volume = 103 | page = 116024 | doi = 10.1103/PhysRevD.103.116024 | arxiv = 2103.16224| s2cid = 232417253 }} }} ! {{math|6 +}} |
---|
{{math|α}}
| 1 | –2/3 | | -1 |
{{math|β}}
| 0 | 0.14(3) {{cite journal | last = Sykes | first = M. F. |author2= M. Glen |author3=D. S. Gaunt | title =The percolation probability for the site problem on the triangular lattice | journal = J. Phys. A: Math. Gen. | volume = 7 | issue = 9 | year = 1974 | pages = L105–L108 | doi = 10.1088/0305-4470/7/9/002 |bibcode = 1974JPhA....7L.105S}} 5/36 | 0.39(2) | last = Sur | first = A. |author2= Joel L. Lebowitz |author3= J. Marro |author4= M. H. Kalos |author5= S. Kirkpatrick | title = Monte Carlo Studies of Percolation Phenomena for a Simple Cubic Lattice | journal = J. Stat. Phys. | volume = 15 | issue = 5 | year = 1976 | pages = 345–353 | doi = 10.1007/BF01020338 |bibcode= 1976JSP....15..345S | s2cid = 38734613 }} | last = Adler | first = Joan | author2 = Yigal Meir | author3 = Amnon Aharony | author4 = A. B. Harris | author5 = Lior Klein | title = Low-Concentration Series in General Dimension | journal = Journal of Statistical Physics | volume = 58 | issue = 3/4 | year = 1990 | pages = 511–538 | doi = 10.1007/BF01112760| bibcode = 1990JSP....58..511A | s2cid = 122109020 | 0.52(3) | 0.66(5) | | 1 |
{{math|γ}}
| 1 | 43/18 | 1.6 | last = Adler | first = J. | author-link = Joan Adler | author2= Y. Meir |author3=A. Aharony |author4=A.B. Harris | title = Series Study of Percolation Moments in General Dimension | journal = Phys. Rev. B | volume = 41 | issue = 13 | year = 1990 | pages = 9183–9206 | doi = 10.1103/PhysRevB.41.9183| pmid = 9993262 | bibcode =1990PhRvB..41.9183A| url = https://repository.upenn.edu/physics_papers/368 | 1.6(1) {{cite journal | last = Kirkpatrick | first = Scott | title = Percolation phenomena in higher dimensions: Approach to the mean-field limit | journal = Phys. Rev. Lett. | volume = 36 | year = 1976 | issue = 2 | pages = 69–72 | doi = 10.1103/PhysRevLett.36.69| bibcode = 1976PhRvL..36...69K }} {{cite journal | last = Gaunt | first = D. S. | author2 = H. Ruskin | title = Bond percolation processes in d dimensions | journal = J. Phys. A: Math. Gen. | volume = 11 | year = 1978 | issue = 7 | pages =1369–1380 | doi = 10.1088/0305-4470/11/7/025| bibcode = 1978JPhA...11.1369G }} | | 1 |
{{math|δ}}
| | 5.29(6) {{ref|derived|*}} {{cite journal | last = Nakanishi | first = H |author2= H. E. Stanley | title = Scaling studies of percolation phenomena in systems of dimensionality of two to seven: Cluster numbers | journal = Physical Review B | volume = 22 | issue = 5 | year = 1980 | pages = 2466–2488 | doi = 10.1103/PhysRevB.22.2466| bibcode = 1980PhRvB..22.2466N}} | | 2 |
{{math|η}}
| 1 | 5/24 | -0.046(8) | -0.12(4) | | 0 |
{{math|ν}}
| 1 | 1.33(5) {{cite journal | last = Levenshteĭn | first = M. E. |author2= B. I. Shklovskiĭ |author3=M. S. Shur |author4=A. L. Éfros | title = The relation between the critical exponents of percolation theory | journal = Zh. Eksp. Teor. Fiz. | volume = 69 | year = 1975 | pages = 386–392 | bibcode = 1975JETP...42..197L }}, | 0.8(1), | last = Wang | first = J. |author2=Z. Zhou |author3=W. Zhang |author4=T. M. Garoni |author5= Y. Deng | title = Bond and site percolation in three dimensions | journal = Physical Review E | volume = 87 | issue = 5 | year = 2013 | pages = 052107 | doi = 10.1103/PhysRevE.87.052107 |arxiv = 1302.0421 |bibcode = 2013PhRvE..87e2107W | pmid = 23767487| s2cid = 14087496 }}, | last = Hu | first = H. |author2=H. W. Blöte |author3= R. M. Ziff |author4= Y. Deng | title = Short-range correlations in percolation at criticality | journal = Physical Review E | volume = 90 | issue = 4 | year = 2014 | pages = 042106 | arxiv = 1406.0130 |bibcode = 2014PhRvE..90d2106H | doi=10.1103/PhysRevE.90.042106| pmid = 25375437 | s2cid = 21410490 }} | last = Koza | first = Zbigniew |author2= Jakub Poła | title = From discrete to continuous percolation in dimensions 3 to 7 | journal = Journal of Statistical Mechanics: Theory and Experiment | volume = 2016 | issue = 10 | year = 2016 | pages = 103206 | doi = 10.1088/1742-5468/2016/10/103206| arxiv =1606.08050| bibcode =2016JSMTE..10.3206K| s2cid = 118580056 }} |last=Brzeski |first=Piotr |last2=Kondrat |first2=Grzegorz |date=2022 |title=Percolation of hyperspheres in dimensions 3 to 5: from discrete to continuous |url=https://iopscience.iop.org/article/10.1088/1742-5468/ac6519 |journal=Journal of Statistical Mechanics: Theory and Experiment |volume=2022 |issue=5 |pages=053202 |doi=10.1088/1742-5468/ac6519 |issn=1742-5468}} | 0.6782(50) | last = Ballesteros | first = H. G. |author2=L. A. Fernández |author3=V. Martín-Mayor |author4=A. Muñoz Sudepe |author5=G. Parisi |author6= J. J. Ruiz-Lorenzo | title = Measures of critical exponents in the four-dimensional site percolation | journal = Physics Letters B | volume = 400 | issue = 3–4 | year = 1997 | pages = 346–351 | doi = 10.1016/S0370-2693(97)00337-7|arxiv = hep-lat/9612024 |bibcode = 1997PhLB..400..346B| s2cid = 10242417 }} | 0.51(5) | last = Gracey | first = J. A. | title = Four loop renormalization of φ^3 theory in six dimensions | journal = Phys. Rev. D | volume = 92 | issue = 2 | year = 2015 | pages = 025012 | doi =10.1103/PhysRevD.92.025012 | arxiv = 1506.03357| bibcode = 2015PhRvD..92b5012G| s2cid = 119205590 }} 0.5723(18) | last = Zhang | first = Zhongjin | author2=Pengcheng Hou | author3=Sheng Fang | author4=Hao Hu | author5=Youjin Deng | title = Critical exponents and universal excess cluster number of percolation in four and five dimensions | journal = Physica A: Statistical Mechanics and Its Applications | year = 2021 | volume = 580 | page = 126124 | doi = 10.1016/j.physa.2021.126124 | arxiv = 2004.11289| bibcode = 2021PhyA..58026124Z | s2cid = 216080833 }} | | 1/2 |
{{math|σ}}
| 1 | 36/91 | 0.42(6) {{cite journal | last = Sykes | first = M. F. |author2=D. S. Gaunt |author3=J. W. Essam | title = The percolation probability for the site problem on the face-centred cubic lattice | journal = J. Phys. A: Math. Gen. | volume = 9 | issue = 5 | year = 1976 | pages = L43–L46 | doi = 10.1088/0305-4470/9/5/002 |bibcode = 1976JPhA....9L..43S}} 0.445(10) {{cite journal | last = Lorenz | first = C. D. |author2=R. M. Ziff | title = Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices | journal = Phys. Rev. E | volume = 57 | issue = 1 | year = 1998 | pages = 230–236 | doi = 10.1103/PhysRevE.57.230|arxiv = cond-mat/9710044 |bibcode = 1998PhRvE..57..230L| s2cid = 119074750 }} | | 1/2 |
{{math|τ}}
| 2 | 187/91 | 2.186(2) {{cite journal | last = Jan | first = N. |author2=D. Stauffer | title = Random Site Percolation in Three Dimensions | journal = Int. J. Mod. Phys. C | year = 1998 | volume = 9 | issue = 2 | pages = 341–347 | doi = 10.1142/S0129183198000261|bibcode = 1998IJMPC...9..341J}}
| last = Tiggemann | first = D. | title = Simulation of percolation on massively parallel computers | journal = Int. J. Mod. Phys. C | year = 2001 | volume = 12 | issue = 6 | pages = 871–878 | doi = 10.1142/S012918310100205X |arxiv = cond-mat/0106354 |bibcode = 2001IJMPC..12..871T| s2cid = 118911971 }} | last = Tiggemann | first = D. | title = Percolation on growing lattices | journal = Int. J. Mod. Phys. C | year = 2006 | volume = 17 | issue = 8 | pages = 1141–1150 | doi = 10.1142/S012918310600962X |arxiv = cond-mat/0604418 |bibcode = 2006IJMPC..17.1141T| s2cid = 119398198 }} 2.1892(1){{cite journal | last = Mertens | first = Stephan |author2=Cristopher Moore | title = Percolation Thresholds and Fisher Exponents in Hypercubic Lattices | journal = Physical Review E | volume = 98 | issue = 2 | pages = 022120 | year = 2018 |arxiv = 1806.08067| doi = 10.1103/PhysRevE.98.022120 | pmid = 30253462 | bibcode = 2018PhRvE..98b2120M | s2cid = 52821851 }} | 2.26 | last = Paul | first = Gerald |author2=R. M. Ziff |author3=H. E. Stanley | title = Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions | journal = Phys. Rev. E | year = 2001 | volume = 64 | issue = 2 | pages = 026115 | doi = 10.1103/PhysRevE.64.026115| pmid = 11497659 |arxiv = cond-mat/0101136 |bibcode = 2001PhRvE..64b6115P| s2cid = 18271196 }} | | 5/2 |
| 1 | 91/48 | 2.523(4) {{ref|derived|*}} | last = Ballesteros | first = P. N. |author2=L. A. Fernández |author3=V. Martín-Mayor |author4=A. Muñoz Sudepe |author5=G. Parisi |author6= J. J. Ruiz-Lorenzo | title = Scaling corrections: site percolation and Ising model in three dimensions | journal = Journal of Physics A | volume = 32 | issue = 1 | year = 1999 | pages = 1–13 | doi = 10.1088/0305-4470/32/1/004|arxiv = cond-mat/9805125 |bibcode = 1999JPhA...32....1B| s2cid = 2787294 }}
| last = Deng | first = Youjin |author2=Henk W. J. Blöte | title = Monte Carlo study of the site-percolation model in two and three dimensions | journal = Phys. Rev. E | volume = 72 | issue = 1 | year = 2005 | pages = 016126 | doi = 10.1103/PhysRevE.72.016126| pmid = 16090055 |bibcode = 2005PhRvE..72a6126D| url = http://resolver.tudelft.nl/uuid:e987a69f-6dde-4d8d-a616-bfcde4d5bdac }}
| last =Xu | first = Xiao | author2=Wang, Junfeng | author3=Lv, Jian-Ping | author4 = Deng, Youjin | title = Simultaneous analysis of three-dimensional percolation models | journal = Frontiers of Physics | volume = 9 | issue = 1 | year = 2014 | pages = 113–119 | doi = 10.1007/s11467-013-0403-z |arxiv = 1310.5399 |bibcode = 2014FrPhy...9..113X| s2cid = 119250232 }} | 3.12(2), 3.05(5), 3.003 {{cite journal | last = LeClair | first = André | author2 = Joshua Squires | year = 2018 | title = Conformal bootstrap for percolation and polymers | journal = Journal of Statistical Mechanics: Theory and Experiment | volume = 2018 | issue = 12 | pages = 123105 | arxiv = 1802.08911 | doi = 10.1088/1742-5468/aaf10a | bibcode = 2018arXiv180208911L | s2cid = 73674896 }} | 3.54(4) | | 4 |
{{math|Ω}}
| | 0.70(2) | last = Kammerer | first = A. |author2=F. Höfling |author3=T. Franosch | title = Cluster-resolved dynamic scaling theory and universal corrections for transport on percolating systems | journal = Europhys. Lett. | year = 2008 | volume = 84 | issue = 6 | pages = 66002 | doi = 10.1209/0295-5075/84/66002|bibcode = 2008EL.....8466002K |arxiv = 0811.1414| s2cid = 16581770 }}
| last = Ziff | first = R. M. |author2=F. Babalievski | title = Site percolation on the Penrose rhomb lattice | journal = Physica A | volume = 269 | issue = 2–4 | pages = 201–210 | year = 1999 | doi = 10.1016/S0378-4371(99)00166-1|bibcode = 1999PhyA..269..201Z}}
| last = Ziff | first = R. M. | title = Correction-to-scaling exponent for two-dimensional percolation | journal = Phys. Rev. E | volume = 83 | issue = 2 | pages = 020107 | year = 2011 | doi = 10.1103/PhysRevE.83.020107 | pmid = 21405805 |bibcode = 2011PhRvE..83b0107Z |arxiv = 1101.0807| s2cid = 14750620 }} | last = Aharony | first = Amnon |author2=Asikainen, Joonas | title = Fractal dimension and corrections to scaling for critical Potts clusters | journal = Fractals, Supplementary Issue | volume = 11 | issue = 1 | pages = 3–7 | year = 2003 | doi = 10.1142/S0218348X03001665| arxiv = cond-mat/0206367 }} | 0.50(9) | last = Gimel | first = Jean-Christophe | author2 = Taco Nicolai | author3 = Dominique Durand | title = Size distribution of percolating clusters on cubic lattices | journal = J. Phys. A: Math. Gen. | volume = 33 | issue = 43 | pages = 7687–7697 | year = 2000 | doi = 10.1088/0305-4470/33/43/302 | bibcode = 2000JPhA...33.7687G | s2cid = 121516245 }} | 0.31(5) | | |
{{math|ω}}
| | 1.26(23) | 0.94(15) | last = Kozlov | first = B. | author2 = M. Laguës | title = Universality of 3D percolation exponents and first-order corrections to scaling for conductivity exponents | journal = Physica A | volume = 389 | issue = 23 | pages = 5339–5346 | year = 2010 | doi = 10.1016/j.physa.2010.08.002| bibcode = 2010PhyA..389.5339K }} | last = Houghton | first = A. | author2 = J. S. Reeve| author3 = D. J. Wallace | title = High-order behavior in phi^3 field theories and the percolation problem | journal =Phys. Rev. B | volume = 17 | issue = 7 | pages = 2956 | year = 1978 | doi = 10.1103/PhysRevB.17.2956| bibcode =1978PhRvB..17.2956H}} | 0 |
| | 0.9479 | last = Milovanov | first = A. V. | title = Topological proof for the Alexander-Orbach conjecture | journal =Phys. Rev. E | volume = 56 | issue = 3 | pages = 2437–2446 | year = 1997 | doi = 10.1103/PhysRevE.56.2437| bibcode =1997PhRvE..56.2437M}}
| last = Cen | first = Wei | author2 = Dongbing Liu | author3 = Bingquan Mao | title = Molecular trajectory algorithm for random walks on percolation systems at criticality in two and three dimensions | journal =Physica A | volume = 391 | issue = 4 | pages = 925–929 | year = 2012 | doi = 10.1016/j.physa.2011.01.003| bibcode =2012PhyA..391..925C }} | 2.276(12) {{cite journal | last = Gingold | first = David B. | author2 = C. J. Lobb | title = Percolative conduction in three dimensions | journal = Physical Review B | volume = 42 | issue = 13 | pages = 8220–8224 | year = 1990 | doi = 10.1103/PhysRevB.42.8220| pmid = 9994994 | bibcode = 1990PhRvB..42.8220G }} | last = Normand | first = Jean-Marie | author2 = Hans J. Herrmann | title = Precise determination of the conductivity exponent of 3D percolation using "Percola" | journal = International Journal of Modern Physics C | volume = 6 | issue = 6 | pages = 813 | year = 1995 | doi = 10.1142/S0129183195000678| bibcode = 1995IJMPC...6..813N | arxiv = cond-mat/9602081 | s2cid = 2912863 }} | last = Clerc | first = Jean-Marie | author2 = V. A. Podolskiy | author3 = A. K. Sarychev | title = Precise determination of the conductivity exponent of 3D percolation using exact numerical renormalization | journal = The European Physical Journal B | volume = 15 | issue = 3 | pages = 507–516 | year = 2000 | doi = 10.1007/s100510051153| bibcode = 2000EPJB...15..507C | s2cid = 121306901 }} | | | | 3 |
| | | | | | |
| | 4/3 {{cite journal | last = Alexander | first = S. | author2 = R. Orbach | title = Density of states on fractals : 'fractons' | journal = Journal de Physique Lettres | volume = 43 | issue = 17 | pages = L625–L631 | year = 1982 | doi = 10.1051/jphyslet:019820043017062500| url = https://hal.archives-ouvertes.fr/jpa-00232103/file/ajp-jphyslet_1982_43_17_625_0.pdf }} | 1.32(6) {{cite journal | last = Argyrakis | first = P. | author2 = R. Kopelman | title = Random walk on percolation clusters | journal = Physical Review B | volume = 29 | issue = 1 | pages = 511–514 | year = 1984 | doi = 10.1103/PhysRevB.29.511 | bibcode = 1984PhRvB..29..511A}} | | | | |
| | 2/3 {{cite journal | last = Cardy | first = John | title = Conformal invariance and surface critical behavior | journal = Nuclear Physics B | volume = 240 | issue = 4 | pages = 514–532 | year = 1984 | doi = 10.1016/0550-3213(84)90241-4| bibcode = 1984NuPhB.240..514C }} | last = Vanderzande | first = C. | title = Surface fractal dimension of two-dimensional percolation | journal = J. Phys. A: Math. Gen. | volume = 21 | issue = 3 | pages = 833–837 | year = 1988 | doi = 10.1088/0305-4470/21/3/039| bibcode = 1988JPhA...21..833V }} | | 1.04(5){{cite journal | last = DeBell | author2 = J. Essam | title = Series expansion studies of percolation at a surface | journal = J. Phys. C: Solid State Phys. | volume = 13 | issue = 25 | pages = 4811–4821 | year = 1980 | doi = 10.1088/0022-3719/13/25/023 | bibcode = 1980JPhC...13.4811D }}
| last = Deng | first = Youjin | author2 = Henk W. J. Blöte | title = Surface critical phenomena in three-dimensional percolation | journal = Phys. Rev. E | volume = 71 | issue = 1 | pages = 016117 | year = 2005 | doi = 10.1103/PhysRevE.71.016117| pmid = 15697668 | bibcode = 2005PhRvE..71a6117D | url = http://resolver.tudelft.nl/uuid:367d3e20-73b0-4368-bfaa-a1340c3ab6e7 }} | 1.32(7){{cite journal | last = Diehl | first = H. W. | author2 = P. M.Lam | title = Semi-infinite Potts model and percolation at surfaces | journal = Z. Phys. B | volume = 74 | issue = 3 | pages = 395–401 | year = 1989 | doi = 10.1007/BF01307889| bibcode = 1989ZPhyB..74..395D | s2cid = 121559161 }} |
| {{cite journal | last = Hansen | first = A | author2 = P. M. Lam | author3 = S. Roux | year = 1981 | title = Surface order parameter in three-dimensional percolation | journal = J. Phys. A: Math. Gen. | volume = 22 | issue = 13 | pages = 2635 | doi = 10.1088/0305-4470/22/13/056 }} | last = Deng | first = Youjin | author2 = H. Bl\:ote | year = 2004 | title = Anisotropic limit of the bond-percolation model and conformal invariance in curved geometries | journal = Phys. Rev. E | volume = 69 | issue = 6 | pages = 066129 | doi = 10.1103/PhysRevE.69.066129 | pmid = 15244689 | bibcode = 2004PhRvE..69f6129D }} | last = Baek | first = Seung Ki | author2 = Petter Minnhagen | author3 = Beom Jun Kim | year = 2010 | title = Surface and bulk criticality in midpoint percolation | journal = Phys. Rev. E | volume = 81 | issue = 4 | pages = 041108 | doi = 10.1103/PhysRevE.81.041108 | pmid = 20481678 | arxiv = 1004.2622 | bibcode = 2010PhRvE..81d1108B | s2cid = 18938058 }} | 3 | |
(surf)
| | | |
| | 1.60(5) {{cite journal | last = Herrmann | first = H. J. | author2= D. C. Hong | author3 = H. E. Stanley | title = Backbone and elastic backbone of percolation clusters obtained by the new method of 'burning' | journal = J. Phys. A: Math. Gen. | volume = 17 | issue = 5 | pages = L261–L266 | year = 1984 | doi = 10.1088/0305-4470/17/5/008 | bibcode = 1984JPhA...17L.261H| s2cid = 16510317 }} | last = Rintoul | first = M. D. | author2 = H. Nakanishi | title = A precise determination of the backbone fractal dimension on two-dimensional percolation clusters | journal = J. Phys. A: Math. Gen. | volume = 25 | issue = 15 | pages = L945 | year = 1992 | doi = 10.1088/0305-4470/25/15/008| bibcode = 1992JPhA...25L.945R }}
| last = Grassberger | first = Peter | title = Spreading and backbone dimensions of 2D percolation | journal = J. Phys. A: Math. Gen. | volume = 25 | issue = 21 | pages = 5475–5484 | year = 1992 | doi = 10.1088/0305-4470/25/21/009|bibcode = 1992JPhA...25.5475G}}
| last = Grassberger | first = Peter | title = Conductivity exponent and backbone dimension in 2-d percolation | journal = Physica A | volume = 262 | issue = 3–4 | pages = 251–263 | year = 1999 | doi = 10.1016/S0378-4371(98)00435-X | arxiv = cond-mat/9808095| bibcode = 1999PhyA..262..251G| s2cid = 955125 }}
| last = Deng | first = Youjin | author2= Henk W. J. Blöte | author3 = Bernard Neinhuis | title = Backbone exponents of the two-dimensional q-state Potts model: A Monte Carlo investigation | journal = Phys. Rev. E | volume = 69 | issue = 2 | pages = 026114 | year = 2004 | doi = 10.1103/PhysRevE.69.026114| pmid = 14995527 | bibcode = 2004PhRvE..69b6114D| url = http://resolver.tudelft.nl/uuid:e59d112a-93de-410e-96aa-b71c217fed77 }} 1.64336(10) {{cite journal | last = Xu | first = Xiao | author2=Wang, Junfeng | author3= Zhou, Zongzheng | author4 = Garoni, Timothy M. | author5 = Deng, Youjin | title = Geometric structure of percolation clusters | journal = Physical Review E | volume = 89 | issue = 1 | year = 2014 | pages = 012120 | doi = 10.1103/PhysRevE.89.012120| pmid = 24580185 | arxiv = 1309.7244| bibcode = 2014PhRvE..89a2120X| s2cid = 25468743 }} 1.64333316328711...* | last = Nolin | first = Pierre | author2= Wei Qian | author3= Xin Sun | author4 = Zijie Zhuang | title = Backbone exponent for two-dimensional percolation | year = 2023 | class = math.PR | eprint = 2309.05050 }} 1.855(15){{cite journal | last = Rintoul | first = M. D. | author2 = H. Nakanishi | title = A precise characterization of three-dimensional percolating backbones | journal = J. Phys. A: Math. Gen. | volume = 27 | issue = 16 | year = 1994 | pages = 5445–5454 | doi = 10.1088/0305-4470/27/16/011| bibcode = 1994JPhA...27.5445R}} | 1.95(5) {{cite journal | last = Moukarzel | first = C. | title = A Fast Algorithm for Backbones | journal = Int. J. Mod. Phys. C | volume = 9 | issue = 6 | year = 1994 | pages = 887–895 | doi = 10.1142/S0129183198000844|arxiv = cond-mat/9801102| s2cid = 14077176 | | 2 |
| | 1.132(2){{cite journal | last = Grassberger | first = P. | title = On the spreading of two-dimensional percolation | journal = J. Phys. A: Math. Gen. | volume = 18 | issue = 4 | year = 1985 | pages = L215–L219 | doi = 10.1088/0305-4470/18/4/005| bibcode = 1985JPhA...18L.215G}} 1.130(3) {{cite journal | last = Herrmann | first = Hans J. | author2 = H. Eugene Stanley | title = The fractal dimension of the minimum path in two- and three-dimensional percolation | journal = J. Phys. A: Math. Gen. | volume = 21 | pages = L829–L833 | year = 1988 | issue = 5 | doi = 10.1088/0305-4470/17/5/008 | bibcode = 1984JPhA...17L.261H| s2cid = 16510317 }} 1.1307(4) | last = Deng | first = Youjin |author2=Wei Zhang |author3 = Timothy M. Garoni|author4= Alan D. Sokal|author5=Andrea Sportiello | title = Some geometric critical exponents for percolation and the random-cluster model | journal = Physical Review E | volume = 81 | issue = 2 | pages = 020102(R) | year = 2010 | doi = 10.1103/PhysRevE.81.020102| pmid = 20365513 |arxiv =0904.3448|bibcode =2010PhRvE..81b0102D| s2cid = 1746746 }} 1.130 77(2) {{cite journal | last = Zhou | first = Zongzheng |author2=Ji Yang |author3=Youjin Deng |author4=Robert M. Ziff | title = Shortest-path fractal dimension for percolation in two and three dimensions | journal = Physical Review E | volume = 86 | issue = 6 | pages =061101 | year = 2012 | doi = 10.1103/PhysRevE.86.061101| pmid = 23367887 |arxiv = 1110.1955 |bibcode = 2012PhRvE..86a1101G| s2cid = 37986944 }} 1.374(6){{cite journal | last = Grassberger | first = Peter | title = Numerical studies of critical percolation in three dimensions | journal = J. Phys. A: Math. Gen. | volume = 25 | issue = 22 | pages = 5867–5888 | year = 1992 | doi = 10.1088/0305-4470/25/22/015|bibcode = 1992JPhA...25.5867G}} | | 2 |
| | 2.1055(10){{cite journal | last = Grassberger | first = Peter | title = Pair connectedness and shortest-path scaling in critical percolation | journal = J. Phys. A: Math. Gen. | volume = 32 | issue = 35 | pages = 6233–6238 | year = 1999 | doi = 10.1088/0305-4470/32/35/301 | arxiv = cond-mat/9906309 | bibcode = 1999JPhA...32.6233G | s2cid = 17663911 }}
| last = Brereton | first = Tim | author2 = Christian Hirsch | author3 = Volker Schmidt | author4 = Dirk Kroese |author-link4=Dirk Kroese | title = A critical exponent for shortest-path scaling in continuum percolation | journal = J. Phys. A: Math. Theor. | volume = 47 | issue = 50 | pages = 505003 | year = 2014 | doi = 10.1088/1751-8113/47/50/505003| bibcode = 2014JPhA...47X5003B | s2cid = 14191555 }} | | | | | |
Exponents for protected percolation
In protected percolation, bonds are removed one at a time only from the percolating cluster. Isolated clusters are no longer modified. Scaling relations: , , , where the primed quantities indicated protected percolation
class="wikitable" |
{{math|d}}
! {{math|1}} ! {{math|2}} ! {{math|3}} ! {{math|4}} ! {{math|5}} ! {{math|6 – ε}} ! {{math|6 +}} |
---|
{{math|β'}}
| | | | | |
{{math|γ'}}
| | | | | |
{{math|τ'}}
| | | | | |
Exponents for directed percolation
Directed percolation (DP) refers to percolation in which the fluid can flow only in one direction along bonds—such as only in the downward direction on a square lattice rotated by 45 degrees. This system is referred to as "1 + 1 dimensional DP" where the two dimensions are thought of as space and time.
and are the transverse (perpendicular) and longitudinal (parallel) correlation length exponents, respectively. Also . It satisfies the hyperscaling relation .
Another convention has been used for the exponent , which here we call , is defined through the relation , so that . It satisfies the hyperscaling relation .
is the exponent corresponding to the behavior of the survival probability as a function of time: .
(sometimes called ) is the exponent corresponding to the behavior of the average number of visited sites at time (averaged over all samples including ones that have stopped spreading): .
The d(space)+1(time) dimensional exponents are given below.
class="wikitable" |
{{math|d+1}}
! {{math|1+1}} ! {{math|2+1}} ! {{math|3+1}} {{cite journal | last1 = Janssen | first1 = H. K. | last2 = Täuber | first2=U. C. | year = 2005 | title = The field theory approach to percolation processes | journal = Annals of Physics | volume = 315 | issue = 1 | pages = 147–192 | arxiv = cond-mat/0409670 | bibcode = 2005AnPhy.315..147J | doi = 10.1016/j.aop.2004.09.011 | s2cid = 19033621 }} ! {{math|Mean Field}} |
---|
{{math|β}}
{{cite journal | last = Jensen | first = I. | year = 1999 | title = Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice | journal = J. Phys. A | volume = 32 | issue = 48 | pages = 5233–5249 | arxiv = cond-mat/9906036 | bibcode = 1999JPhA...32.5233J | doi = 10.1088/0305-4470/32/28/304 | s2cid = 2681356 {{cite journal | last = Wang | first = Junfeng | author2=Zongzheng Zhou | author3=Qingquan Liu | author4=Timothy M. Garoni | author5= Youjin Deng | year = 2013 | title = High-precision Monte Carlo study of directed percolation in (d + 1) dimensions | journal = Phys. Rev. E | volume = 88 | issue = 4 | pages = 042102 | arxiv = 1201.3006 | bibcode = 2013PhRvE..88d2102W | doi = 10.1103/PhysRevE.88.042102 | pmid = 24229111 | s2cid = 43011467 }} {{cite journal | last = Jensen | first = I. | year = 1992 | title = Critical behavior of the three-dimensional contact process | journal = Phys. Rev. A | volume = 45 | issue = 2 | pages = R563–R566 | bibcode = 1992PhRvA..45..563J | doi = 10.1103/PhysRevA.45.R563 | pmid = 9907104 | | 1 |
{{math|δ,α }}
{{cite journal | last1 = Voigt | first1 = C. A. | last2=Ziff | first2= R. M. | year = 1997 | title = Epidemic analysis of the second-order transition in the Ziff-Gulari-Barshad surface-reaction model | journal = Phys. Rev. E | volume = 56 | issue = 6 | pages = R6241–R6244 | doi = 10.1103/PhysRevE.56.R6241 | arxiv = cond-mat/9710211 | bibcode = 1997PhRvE..56.6241V | s2cid = 118952705 {{cite journal | last = Grassberger | first = P. | author2= Y. Zhang | year = 1996 | title = 'Self-organized' formulation of standard percolation phenomena | journal = Physica A | volume = 224 | issue = 1–2 | pages = 169 | doi = 10.1016/0378-4371(95)00321-5 | bibcode = 1996PhyA..224..169G {{cite journal | last = Grassberger | first = P. | year = 1989 | title = Directed percolation in 2+1 dimensions | journal = J. Phys. A: Math. Gen. | volume = 22 | issue = 17 | pages = 3673–3679 | doi = 10.1088/0305-4470/22/17/032 | bibcode = 1989JPhA...22.3673G }} {{cite book | last = Henkel | first = M. | author2 = H. Hinrichsen | author3 = S. Lŭbeck | date=2008 | title = Non-equilibrium phase transitions, Vol. 1: Absorbing phase transitions | publisher=Springer, Dordrecht | | 1 |
{{math|η,θ}}
{{cite journal | last = Perlsman | first = E. | author2= S. Havlin | year = 2002 | title = Method to estimate critical exponents using numerical studies | journal = EPL | volume = 58 | issue = 2 | pages = 176–181 | doi = 10.1209/epl/i2002-00621-7 | bibcode = 2002EL.....58..176P | s2cid = 67818664 | url = https://semanticscholar.org/paper/502191a5395e90141d8f22da5576825a693cda5a | | |
{{math|}}
{{cite journal | last = Jensen | first = Iwan | year = 1996 | title = Low-density series expansions for directed percolation on square and triangular lattices | journal = J. Phys. A: Math. Gen. | volume = 29 | issue = 22 | pages = 7013–7040 | doi = 10.1088/0305-4470/29/22/007 | bibcode = 1996JPhA...29.7013J }} {{cite journal | last = Amaral | first = L. A. N. | author2 = A.-L. Barabási | author3 = S. V. Buldyrev | author4 = S. T. Harrington | author5 = S. Havlin | author6 = R. Sadr-Lahijany | author7 = H. E. Stanley | year = 1995 | title = Avalanches and the directed percolation depinning model: Experiments, simulations, and theory | journal = Phys. Rev. E | volume = 51 | issue = 5 | pages = 4655–4673 | doi = 10.1103/PhysRevE.51.4655 | pmid = 9963178 | arxiv = cond-mat/9412047 | bibcode = 1995PhRvE..51.4655A | s2cid = 9953616 }} {{cite journal | last = Janssen | first = H. K. | year = 1981 | title = On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state | journal = Annals of Physics | volume = 42 | issue = 2 | pages = 151–154 | doi = 10.1007/BF01319549 | bibcode = 1981ZPhyB..42..151J | s2cid = 120819248 }} | | |
{{math|}}
| | |
{{math|}}
| 1.7660(16) | | 2 |
{{math|γ}}
| 2.277730(5) = 41/18?, {{cite journal | last = Essam | first = J. W. | author2= A. J. Guttmann | author3 = K. De'Bell | year = 1988 | title = On two-dimensional directed percolation | journal = J. Phys. A | volume = 21 | issue =19 | pages = 3815–3832 | doi = 10.1088/0305-4470/21/19/018 | bibcode =1988JPhA...21.3815E }} | | 1 |
{{math|τ}}
{{cite journal | last = Dhar | first = Deepak | author2= Mustansir Barma | year = 1981 | title = Monte Carlo simulationof directed percolationon a square lattice | journal = J. Phys. C: Solid State Phys. | volume = 14 | issue = 1| pages = Ll-L6 | doi = 10.1088/0022-3719/14/1/001 | bibcode = 1981JPhC...14L...1D }} | last = Owczarek | first = A. L. | author2= A. Rechnitzer | author3= R. Brak | author4= A. J. Guttmann | year = 1997 | title = On the hulls of directed percolation clusters | journal = J. Physics A: Math. Gen. | volume = 30 | issue = 19| pages = 6679 | doi = 10.1088/0305-4470/30/19/011 | bibcode = 1997JPhA...30.6679O | | | | |
Scaling relations for directed percolation
{{cite journal
| last = Deng | first = Youjin
| author2= Robert M. Ziff
| year = 2022
| title = The elastic and directed percolation backbone
| journal = J. Phys. A: Math. Theor.
| volume = 55 | issue = 24| pages = 244002
| doi = 10.1088/1751-8121/ac6843
| bibcode = 2022JPhA...55x4002D
| arxiv = 1805.08201| s2cid = 73528075
}}
Exponents for dynamic percolation
For dynamic percolation (epidemic growth of ordinary percolation clusters), we have
, implying
For , consider , and taking the derivative with respect to yields , implying
Also,
Using exponents above, we find
class="wikitable" |
{{math|d:}}
! {{math|2}} ! {{math|3}} ! {{math|4}} ! {{math|5}} ! {{math|6 – ε}} ! {{math|Mean Field}} |
---|
{{math|}}
| 0.09212 | 0.34681 | 0.59556 | 0.8127 | | 1 |
{{math|}}
| 0.584466 | 0.48725 | 0.30233 | 0.1314 | | 0 |
See also
Notes
{{reflist|group=note}}
References
{{reflist}}
= Further reading =
- {{citation
| last1 = Stauffer
| first1 = D.
| last2 = Aharony
| first2 = A.
| title = Introduction to Percolation Theory
| edition = 2nd
| publisher = CRC Press
| year = 1994
| isbn = 978-0-7484-0253-3}}