Percolation critical exponents

{{Use American English|date = February 2019}}

{{Short description|Mathematical parameter in percolation theory}}

{{Use mdy dates|date = February 2019}}

{{cat more|Percolation theory}}

In the context of the physical and mathematical theory of percolation, a percolation transition is characterized by a set of universal critical exponents, which describe the fractal properties of the percolating medium at large scales and sufficiently close to the transition. The exponents are universal in the sense that they only depend on the type of percolation model and on the space dimension. They are expected to not depend on microscopic details such as the lattice structure, or whether site or bond percolation is considered. This article deals with the critical exponents of random percolation.

Percolating systems have a parameter p\,\! which controls the occupancy of sites or bonds in the system. At a critical value p_c\,\!, the mean cluster size goes to infinity and the percolation transition takes place. As one approaches p_c\,\!, various quantities either diverge or go to a constant value by a power law in |p - p_c|\,\!, and the exponent of that power law is the critical exponent. While the exponent of that power law is generally the same on both sides of the threshold, the coefficient or "amplitude" is generally different, leading to a universal amplitude ratio.

Description

Thermodynamic or configurational systems near a critical point or a continuous phase transition become fractal, and the behavior of many quantities in such circumstances is described by universal critical exponents. Percolation theory is a particularly simple and fundamental model in statistical mechanics which has a critical point, and a great deal of work has been done in finding its critical exponents, both theoretically (limited to two dimensions) and numerically.

Critical exponents exist for a variety of observables, but most of them are linked to each other by exponent (or scaling) relations. Only a few of them are independent, and the choice of the fundamental exponents depends on the focus of the study at hand. One choice is the set \{\sigma,\, \tau\}\,\! motivated by the cluster size distribution, another choice is \{d_\text{f},\, \nu\}\,\! motivated by the structure of the infinite cluster. So-called correction exponents extend these sets, they refer to higher orders of the asymptotic expansion around the critical point.

Definitions of exponents

= Self-similarity at the percolation threshold =

Percolation clusters become self-similar precisely at the threshold density p_c\,\! for sufficiently large length scales, entailing the following asymptotic power laws:

The fractal dimension d_\text{f}\,\! relates how the mass of the incipient infinite cluster depends on the radius or another length measure, M(L) \sim L^{d_\text{f}}\,\! at p=p_c\,\! and for large probe sizes, L\to\infty\,\!. Other notation: magnetic exponent y_h = D - d_f\,\! and co-dimension \Delta_\sigma = d - d_f\,\!.

The Fisher exponent \tau\,\! characterizes the cluster-size distribution n_s\,\!, which is often determined in computer simulations. The latter counts the number of clusters with a given size (volume) s\,\!, normalized by the total volume (number of lattice sites). The distribution obeys a power law at the threshold, n_s \sim s^{-\tau}\,\! asymptotically as s\to\infty\,\!.

The probability for two sites separated by a distance \vec r\,\! to belong to the same cluster decays as g(\vec r)\sim |\vec r|^{-2(d-d_\text{f})}\,\! or g(\vec r)\sim |\vec r|^{-d+(2-\eta)}\,\! for large distances, which introduces the anomalous dimension \eta\,\!. Also, \delta = (d + 2 - \eta)/(d - 2 + \eta) and \eta = 2 - \gamma/\nu.

The exponent \Omega\,\! is connected with the leading correction to scaling, which appears, e.g., in the asymptotic expansion of the cluster-size distribution,

n_s \sim s^{-\tau}(1+\text{const} \times s^{-\Omega})\,\! for s\to\infty\,\!. Also, \omega = \Omega/(\sigma \nu) = \Omega d_f.

For quantities like the mean cluster size S \sim a_0 |p - p_c|^{-\gamma} (1 + a_1 (p - p_c)^{\Delta_1} +\ldots ), the corrections are controlled by the exponent \Delta_1 = \Omega\beta\delta = \omega \nu.

The minimum or chemical distance or shortest-path exponent d_\mathrm{min} describes how the average minimum distance \langle \ell \rangle relates to the Euclidean distance r, namely \langle \ell \rangle \sim r^{d_\mathrm{min}} Note, it is more appropriate and practical to measure average r, <r> for a given \ell. The elastic backbone has the same fractal dimension as the shortest path. A related quantity is the spreading dimension d_\ell, which describes the scaling of the mass M of a critical cluster within a chemical distance \ell as M \sim \ell^{d_\ell}, and is related to the fractal dimension d_f of the cluster by d_\ell = d_f/d_\mathrm{min}. The chemical distance can also be thought of as a time in an epidemic growth process, and one also defines \nu_t where d_\mathrm{min} = \nu_t/\nu = z , and z is the dynamical exponent. One also writes \nu_\parallel = \nu_t .

Also related to the minimum dimension is the simultaneous growth of two nearby clusters. The probability that the two clusters coalesce exactly in time t scales as p(t) \sim t^{-\lambda} with \lambda = 1 + 5/(4 d_\mathrm{min}).{{cite journal

| title = Exact critical exponent for the shortest-path scaling function in percolation

| last = Ziff

| first = R. M.

| year = 1999

| pages = L457–L459

| journal = J. Phys. A: Math. Gen.

| volume = 32

| issue = 43

| doi = 10.1088/0305-4470/32/43/101| arxiv = cond-mat/9907305

| bibcode = 1999JPhA...32L.457Z

| s2cid = 1605985

}}

The dimension of the backbone, which is defined as the subset of cluster sites

carrying the current when a voltage difference is applied between two sites far apart, is d_\text{b} (or d_\text{BB}). One also defines \xi=d-d_\text{b}.

The fractal dimension of the random walk on an infinite incipient percolation cluster is given by d_w.

The spectral dimension \tilde d such that the average number of distinct sites visited in an N-step random walk scales as N^{\tilde d}.

= Critical behavior close to the percolation threshold =

The approach to the percolation threshold is governed by power laws again, which hold asymptotically close to p_c\,\!:

The exponent \nu\,\! describes the divergence of the correlation length \xi\,\! as the percolation transition is approached, \xi \sim |p-p_c|^{-\nu}\,\!. The infinite cluster becomes homogeneous at length scales beyond the correlation length; further, it is a measure for the linear extent of the largest finite cluster. Other notation: Thermal exponent y_t = 1/\nu and dimension \Delta_\epsilon = d - 1/\nu .

Off criticality, only finite clusters exist up to a largest cluster size s_\max\,\!, and the cluster-size distribution is smoothly cut off by a rapidly decaying function, n_s \sim s^{-\tau} f(s/s_\max)\,\!. The exponent \sigma characterizes the divergence of the cutoff parameter, s_\max \sim |p-p_c|^{-1/\sigma}\,\!. From the fractal relation we have s_\max \sim \xi^{d_\text{f}}\,\!, yielding \sigma = 1/\nu d_\text{f}\,\!.

The density of clusters (number of clusters per site) n_c is continuous at the threshold but its third derivative goes to infinity as determined by the exponent \alpha: n_c \sim A + B (p - p_c) + C (p - p_c)^2 + D_\pm |p - p_c|^{2 - \alpha} + \cdots, where D_\pm represents the coefficient above and below the transition point.

The strength or weight of the percolating cluster, P or P_\infty, is the probability that a site belongs to an infinite cluster. P is zero below the transition and is non-analytic. Just above the transition, P\sim (p-p_c)^\beta\,\!, defining the exponent \beta\,\!. \ P plays the role of an order parameter.

The divergence of the mean cluster size S=\sum_s s^2 n_s/p_c \sim |p-p_c|^{-\gamma}\,\! introduces the exponent \gamma\,\!.

The gap exponent Δ is defined as Δ = 1/(β+γ) = 1/σ and represents the "gap" in critical exponent values from one moment M_n to the next M_{n+1} for n > 2.

The conductivity exponent t = \nu t' describes how the electrical conductivity C goes to zero in a conductor-insulator mixture, C\sim (p-p_c)^t\,\!. Also, t' = \zeta .

= Surface critical exponents =

The probability a point at a surface belongs to the percolating or infinite cluster for p\ge p_c is P_\mathrm{surf}\sim (p-p_c)^{\beta_\mathrm{surf}}\,\!.

The surface fractal dimension is given by d_\mathrm{surf} = d - 1 -\beta_\mathrm{surf}/\nu .{{cite journal

| last = Stauffer

| first = D.

|author2= A. Aharony

| title = Density profile of the incipient infinite percolation cluster

| journal = International Journal of Modern Physics C

| volume = 10

| issue = 5

| year = 1999

| pages = 935–940

| doi = 10.1142/S0129183199000735| bibcode = 1999IJMPC..10..935S

}}

Correlations parallel and perpendicular to the surface decay as g_\parallel(\vec r)\sim |\vec r|^{2-d-\eta_\parallel}\,\! and g_\perp(\vec r)\sim |\vec r|^{2-d-\eta_\perp}\,\!.{{cite journal

| last = Binder

| first = K.

|author2= P. C. Hohenberg

| title = Phase Transitions and Static Spin Correlations in Ising Models with Free Surfaces

| journal = Physical Review B

| volume = 6

| issue = 9

| year = 1972

| pages = 3461–3487

| doi = 10.1103/PhysRevB.6.3461| bibcode = 1972PhRvB...6.3461B

| url = https://link.aps.org/doi/10.1103/PhysRevB.6.3461

}}

The mean size of finite clusters connected to a site in the surface is \chi_1\sim|p-p_c|^{-\gamma_1}.{{cite thesis

|type=PhD Thesis

|last=De'Bell

|first=Keith

|date=1980

|title=Surface effects in percolation

|publisher=University of London

}}{{cite book

|last=Binder

|first=K.

|date=1981

|editor-last=Domb

|editor-first=C.

|editor2-last=Lebowitz

|editor2-first=J. L.

|title=Phase Transitions and Critical Phenomena, Volume 8

|publisher=Academic Press

|pages=1–144

|chapter=Critical Behaviour at Surfaces

|isbn=978-0122203084

}}

The mean number of surface sites connected to a site in the surface is \chi_{1,1}\sim|p-p_c|^{-\gamma_{1,1}}.

Scaling relations

= Hyperscaling relations =

: \tau = \frac{d}{d_\text{f}} + 1\,\!

: d_\text{f} = d - \frac{\beta}{\nu}\,\!

: \eta = 2 + d - 2 d_\text{f}\,\!

= Relations based on <math>\{\sigma, \tau\}</math> =

:\alpha = 2 - \frac{\tau - 1}{\sigma}\,\!

:\beta = \frac{\tau - 2}{\sigma}\,\!

:\gamma = \frac{3-\tau}{\sigma}\,\!

:\beta+\gamma = \frac{1}{\sigma} = \nu d_f\,\!

:\nu = \frac{\tau-1}{\sigma d} = \frac{2\beta+\gamma}{d}\,\!

:\delta = \frac{1}{\tau-2}\,\!

= Relations based on <math>\{d_\text{f}, \nu\}</math> =

:\alpha = 2 - \nu d\,\!

:\beta = \nu (d - d_\text{f})\,\!

:\gamma = \nu (2 d_\text{f} - d)\,\!

:\sigma = \frac{1}{ \nu d_\text{f}}\,\!

= Conductivity scaling relations =

:d_w = d + \frac{t-\beta}{ \nu}\,\!

:t' = d_w - d_f\,\!

:\tilde d = 2 d_f/d_w

= Surface scaling relations =

: \eta_\parallel = 2 - d + 2 \beta_\mathrm{surf}/\nu\,\!

:d_\mathrm{surf} = d - 1 -\beta_\mathrm{surf}/\nu\,\!

: \eta_\parallel = 2\eta_\perp - \eta \, {{cite journal

| last = Lubensky

| first = T. C.

|author2= M. H. Rubin

| title = Critical phenomena in semi-infinite systems. I. \epsilon expansion for positive extrapolation length

| journal = Physical Review B

| volume = 11

| issue = 11

| year = 1975

| pages = 4533–4546

| doi = 10.1103/PhysRevB.11.4533| bibcode = 1975PhRvB..11.4533L

| url = https://link.aps.org/doi/10.1103/PhysRevB.11.4533

}}

:\gamma_{1} = \nu (2-\eta_\perp)\,\!

:\gamma_{1,1} = \nu (d-1-2 \beta_\mathrm{surf}/\nu)=\nu(1-\eta_\parallel)\,\!{{cite journal

| last = Pleimling

| first = M

| title = Critical phenomena at perfect and non-perfect surfaces

| journal = Journal of Physics A: Mathematical and General

| volume = 37

| year = 2004

| issue = 19

| pages = R79–R115

| doi = 10.1088/0305-4470/37/19/R01

| arxiv = cond-mat/0402574

| s2cid = 15712212

}}

: \gamma + \nu = 2\gamma_1 - \gamma_{1,1} \,\!

: x_1 = \beta_\mathrm{surf}/\nu\,\!

Exponents for standard percolation

class="wikitable"
{{math|d}}

! {{math|1}}{{cite journal

| last = Reynolds

| first = P. J.

|author2=H. E. Stanley |author3=W. Klein

| title = Ghost fields, pair connectedness, and scaling: exact results in one-dimensional percolation

| journal = Journal of Physics A: Mathematical and General

| volume = 10

| issue = 11

| year = 1977

| pages = L203–L209

| url = https://doi.org/10.1088/0305-4470/10/11/007| doi = 10.1088/0305-4470/10/11/007

| bibcode = 1977JPhA...10L.203R

}}

! {{math|2}}

! {{math|3}}

! {{math|4}}

! {{math|5}}

! {{math|6 – ε}}{{cite journal

| title = Percolation theory

| last = Essam

| first = J. W.

| year = 1980

| pages = 833–912

| journal = Rep. Prog. Phys.

| volume = 43

| issue = 7

| url = http://stacks.iop.org/0034-4885/43/i=7/a=001|bibcode = 1980RPPh...43..833E |doi = 10.1088/0034-4885/43/7/001| s2cid = 250755965

}}

{{cite journal

| last = Harris

| first = A. B.

|author2= T. C. Lubensky |author3= W. K. Holcomb |author4= C. Dasgupta

| title = Renormalization-group approach to percolation problems

| journal = Physical Review Letters

| volume = 35

| issue = 6

| year = 1975

| pages = 327–330

| doi = 10.1103/PhysRevLett.35.327| bibcode = 1975PhRvL..35..327H| url = https://repository.upenn.edu/cgi/viewcontent.cgi?article=1329&context=physics_papers

}}

{{cite journal

| last = Priest

| first = R. G.

|author2= T. C. Lubensky

| title = Critical properties of two tensor models with application to the percolation problem

| journal = Physical Review B

| volume = 13

| issue = 9

| year = 1976

| pages = 4159–4171

| doi = 10.1103/PhysRevB.13.4159| bibcode = 1976PhRvB..13.4159P

| url = https://link.aps.org/doi/10.1103/PhysRevB.13.4159

}}

{{refn|group=note|For higher-order terms in the \varepsilon expansions, see.{{cite journal

| last = Alcantara Bonfim

| first = 0. F.

| author2 = J E Kirkham

| author3 = A J McKane

| title = Critical exponents for the percolation problem and the Yang-Lee edge singularity

| journal = J. Phys. A: Math. Gen.

| volume = 14

| issue = 9

| pages = 2391–2413

| year = 1981

| doi = 10.1088/0305-4470/14/9/034

| bibcode =1981JPhA...14.2391D

| doi-access = free

}}{{cite journal

| last = Borinsky

| first = M

| author2=J. A. Gracey

| author3=M. V. Kompaniets

| author4=O. Schnetz

| title = Five loop renormalization of phi^3 theory with applications to the Lee-Yang edge singularity and percolation theory

| journal = Physical Review D

| year = 2021

| volume = 103

| page = 116024

| doi = 10.1103/PhysRevD.103.116024

| arxiv = 2103.16224| s2cid = 232417253

}}

}}

! {{math|6 +}}

{{math|α}}

| 1

| –2/3

| -0.625(3)
-0.64(4)

| -0.756(40)
-0.75(2)

| -0.870(1)

| -1 + \frac{\varepsilon}{7} - \frac{443}{2^2 3^2 7^3} \varepsilon^2

| -1

{{math|β}}

| 0

| 0.14(3) {{cite journal

| last = Sykes

| first = M. F.

|author2= M. Glen

|author3=D. S. Gaunt

| title =The percolation probability for the site problem on the triangular lattice

| journal = J. Phys. A: Math. Gen.

| volume = 7

| issue = 9

| year = 1974

| pages = L105–L108

| doi = 10.1088/0305-4470/7/9/002 |bibcode = 1974JPhA....7L.105S}}

5/36

| 0.39(2)
0.4181(8)
0.41(1) {{cite journal

| last = Sur

| first = A.

|author2= Joel L. Lebowitz

|author3= J. Marro

|author4= M. H. Kalos

|author5= S. Kirkpatrick

| title = Monte Carlo Studies of Percolation Phenomena for a Simple Cubic Lattice

| journal = J. Stat. Phys.

| volume = 15

| issue = 5

| year = 1976

| pages = 345–353

| doi = 10.1007/BF01020338 |bibcode= 1976JSP....15..345S

| s2cid = 38734613

}}
0.405(25),{{cite journal

| last = Adler

| first = Joan

| author2 = Yigal Meir

| author3 = Amnon Aharony

| author4 = A. B. Harris

| author5 = Lior Klein

| title = Low-Concentration Series in General Dimension

| journal = Journal of Statistical Physics

| volume = 58

| issue = 3/4

| year = 1990

| pages = 511–538

| doi = 10.1007/BF01112760| bibcode = 1990JSP....58..511A

| s2cid = 122109020

}}
0.4273

0.4053(5)

0.429(4)

| 0.52(3)
0.639(20)
0.657(9)
0.6590

0.658(1)

| 0.66(5)
0.835(5)
0.830(10)
0.8457

0.8454(2)

| 1 - \frac{\varepsilon}{7}-\frac{61}{2^2 3^2 7^3} \varepsilon^2

| 1

{{math|γ}}

| 1

| 43/18

| 1.6
1.80(5)
1.66(7)
1.793(3)
1.805(20) {{cite journal

| last = Adler

| first = J.

| author-link = Joan Adler

| author2= Y. Meir |author3=A. Aharony |author4=A.B. Harris

| title = Series Study of Percolation Moments in General Dimension

| journal = Phys. Rev. B

| volume = 41

| issue = 13

| year = 1990

| pages = 9183–9206

| doi = 10.1103/PhysRevB.41.9183| pmid = 9993262

| bibcode =1990PhRvB..41.9183A| url = https://repository.upenn.edu/physics_papers/368

}}
1.8357
1.819(3)

1.78(3)

| 1.6(1)
1.48(8)
1.422(16)
1.4500
1.435(15)

1.430(6)

| 1.3(1)

{{cite journal

| last = Kirkpatrick

| first = Scott

| title = Percolation phenomena in higher dimensions: Approach to the mean-field limit

| journal = Phys. Rev. Lett.

| volume = 36

| year = 1976

| issue = 2

| pages = 69–72

| doi = 10.1103/PhysRevLett.36.69| bibcode = 1976PhRvL..36...69K

}}

1.18(7)

{{cite journal

| last = Gaunt

| first = D. S.

| author2 = H. Ruskin

| title = Bond percolation processes in d dimensions

| journal = J. Phys. A: Math. Gen.

| volume = 11

| year = 1978

| issue = 7

| pages =1369–1380

| doi = 10.1088/0305-4470/11/7/025| bibcode = 1978JPhA...11.1369G

}}

1.185(5)
1.1817

1.1792(7)

| 1 + \frac{\varepsilon}{7}+\frac{565}{2^2 3^2 7^3} \varepsilon^2

| 1

{{math|δ}}

| \infty

| 91/5, 18

| 5.29(6) {{ref|derived|*}}
5.3

{{cite journal

| last = Nakanishi

| first = H

|author2= H. E. Stanley

| title = Scaling studies of percolation phenomena in systems of dimensionality of two to seven: Cluster numbers

| journal = Physical Review B

| volume = 22

| issue = 5

| year = 1980

| pages = 2466–2488

| doi = 10.1103/PhysRevB.22.2466| bibcode = 1980PhRvB..22.2466N}}

5.16(4)

| 3.9
3.198(6)

3.175(8)

| 3.0

2.3952(12)

| 2 + \frac{2}{7}\varepsilon+\frac{565}{2\cdot 3^2 7^3} \varepsilon^2

| 2

{{math|η}}

| 1

| 5/24

| -0.046(8)
-0.059(9)
-0.07(5)
-0.0470

−0.03(1)

| -0.12(4)
-0.0944(28)
-0.0929(9)
-0.0954

-0.084(4)

| -0.075(20)
-0.0565

−0.0547(10)

| -\frac{\varepsilon}{21}-\frac{206}{3^3 7^3} \varepsilon^2

| 0

{{math|ν}}

| 1

| 1.33(5) {{cite journal

| last = Levenshteĭn

| first = M. E.

|author2= B. I. Shklovskiĭ |author3=M. S. Shur |author4=A. L. Éfros

| title = The relation between the critical exponents of percolation theory

| journal = Zh. Eksp. Teor. Fiz.

| volume = 69

| year = 1975

| pages = 386–392

| bibcode = 1975JETP...42..197L

}},


4/3

| 0.8(1),
0.80(5),
0.872(7)
0.875(1)
0.8765(18)
0.8960
0.8764(12){{cite journal

| last = Wang

| first = J.

|author2=Z. Zhou |author3=W. Zhang |author4=T. M. Garoni |author5= Y. Deng

| title = Bond and site percolation in three dimensions

| journal = Physical Review E

| volume = 87

| issue = 5

| year = 2013

| pages = 052107

| doi = 10.1103/PhysRevE.87.052107 |arxiv = 1302.0421 |bibcode = 2013PhRvE..87e2107W | pmid = 23767487| s2cid = 14087496

}},


0.8751(11) {{cite journal

| last = Hu

| first = H.

|author2=H. W. Blöte |author3= R. M. Ziff |author4= Y. Deng

| title = Short-range correlations in percolation at criticality

| journal = Physical Review E

| volume = 90

| issue = 4

| year = 2014

| pages = 042106

| arxiv = 1406.0130 |bibcode = 2014PhRvE..90d2106H | doi=10.1103/PhysRevE.90.042106| pmid = 25375437

| s2cid = 21410490

}}


0.8762(12)
0.8774(13){{cite journal

| last = Koza

| first = Zbigniew

|author2= Jakub Poła

| title = From discrete to continuous percolation in dimensions 3 to 7

| journal = Journal of Statistical Mechanics: Theory and Experiment

| volume = 2016

| issue = 10

| year = 2016

| pages = 103206

| doi = 10.1088/1742-5468/2016/10/103206| arxiv =1606.08050| bibcode =2016JSMTE..10.3206K| s2cid = 118580056

}}
0.88(2) 0.8762(7) {{Cite journal

|last=Brzeski |first=Piotr

|last2=Kondrat |first2=Grzegorz

|date=2022

|title=Percolation of hyperspheres in dimensions 3 to 5: from discrete to continuous |url=https://iopscience.iop.org/article/10.1088/1742-5468/ac6519

|journal=Journal of Statistical Mechanics: Theory and Experiment

|volume=2022 |issue=5 |pages=053202 |doi=10.1088/1742-5468/ac6519 |issn=1742-5468}}

| 0.6782(50)
0.689(10){{cite journal

| last = Ballesteros

| first = H. G.

|author2=L. A. Fernández |author3=V. Martín-Mayor |author4=A. Muñoz Sudepe |author5=G. Parisi |author6= J. J. Ruiz-Lorenzo

| title = Measures of critical exponents in the four-dimensional site percolation

| journal = Physics Letters B

| volume = 400

| issue = 3–4

| year = 1997

| pages = 346–351

| doi = 10.1016/S0370-2693(97)00337-7|arxiv = hep-lat/9612024 |bibcode = 1997PhLB..400..346B| s2cid = 10242417

}}

0.6920

0.693

0.6852(28)

0.6845(23)

0.6845(6){{Cite journal |last1=Tan |first1=Xiao-Jun |last2=Deng |first2=You-Jin |last3=Jacobsen |first3=Jesper Lykke |date=2020 |title=N-cluster correlations in four- and five-dimensional percolation |url=https://link.springer.com/10.1007/s11467-020-0972-6 |journal=Frontiers of Physics |language=en |volume=15 |issue=4 |page=41501 |doi=10.1007/s11467-020-0972-6 |issn=2095-0462|arxiv=2006.10981 |bibcode=2020FrPhy..1541501T |s2cid=219956814 }}

0.686(2)

0.6842(16)

| 0.51(5)
0.569(5) cited in
0.571(3)
0.5746 {{cite journal

| last = Gracey

| first = J. A.

| title = Four loop renormalization of φ^3 theory in six dimensions

| journal = Phys. Rev. D

| volume = 92

| issue = 2

| year = 2015

| pages = 025012

| doi =10.1103/PhysRevD.92.025012 | arxiv = 1506.03357| bibcode = 2015PhRvD..92b5012G| s2cid = 119205590

}}

0.5723(18)
0.5737(33) {{cite journal

| last = Zhang

| first = Zhongjin

| author2=Pengcheng Hou

| author3=Sheng Fang

| author4=Hao Hu

| author5=Youjin Deng

| title = Critical exponents and universal excess cluster number of percolation in four and five dimensions

| journal = Physica A: Statistical Mechanics and Its Applications

| year = 2021

| volume = 580

| page = 126124

| doi = 10.1016/j.physa.2021.126124

| arxiv = 2004.11289| bibcode = 2021PhyA..58026124Z

| s2cid = 216080833

}}

0.5757(7)

0.5739(1)

0.5720(43)

| \frac12 + \frac{5}{84} \varepsilon + \frac{589}{2^2 3^3 7^3} \varepsilon^2

| 1/2

{{math|σ}}

| 1

| 36/91

| 0.42(6) {{cite journal

| last = Sykes

| first = M. F.

|author2=D. S. Gaunt

|author3=J. W. Essam

| title = The percolation probability for the site problem on the face-centred cubic lattice

| journal = J. Phys. A: Math. Gen.

| volume = 9

| issue = 5

| year = 1976

| pages = L43–L46

| doi = 10.1088/0305-4470/9/5/002 |bibcode = 1976JPhA....9L..43S}}


0.445(10) {{cite journal

| last = Lorenz

| first = C. D.

|author2=R. M. Ziff

| title = Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices

| journal = Phys. Rev. E

| volume = 57

| issue = 1

| year = 1998

| pages = 230–236

| doi = 10.1103/PhysRevE.57.230|arxiv = cond-mat/9710044 |bibcode = 1998PhRvE..57..230L| s2cid = 119074750

}}


0.4522(8)
0.4524(6)


0.4419

0.452(7)

|0.476(5)
0.4742

0.4789(14)

| 0.496(4)
0.4933

0.49396(13)

| \frac12 - \frac{1}{98} \varepsilon^2

| 1/2

{{math|τ}}

| 2

| 187/91

| 2.186(2) {{cite journal

| last = Jan

| first = N.

|author2=D. Stauffer

| title = Random Site Percolation in Three Dimensions

| journal = Int. J. Mod. Phys. C

| year = 1998

| volume = 9

| issue = 2

| pages = 341–347

| doi = 10.1142/S0129183198000261|bibcode = 1998IJMPC...9..341J}}


2.1888
2.189(2)
2.190(2) {{cite journal

| last = Tiggemann

| first = D.

| title = Simulation of percolation on massively parallel computers

| journal = Int. J. Mod. Phys. C

| year = 2001

| volume = 12

| issue = 6

| pages = 871–878

| doi = 10.1142/S012918310100205X |arxiv = cond-mat/0106354 |bibcode = 2001IJMPC..12..871T| s2cid = 118911971

}}


2.189(1) {{cite journal

| last = Tiggemann

| first = D.

| title = Percolation on growing lattices

| journal = Int. J. Mod. Phys. C

| year = 2006

| volume = 17

| issue = 8

| pages = 1141–1150

| doi = 10.1142/S012918310600962X |arxiv = cond-mat/0604418 |bibcode = 2006IJMPC..17.1141T| s2cid = 119398198

}}


2.18906(8)
2.18909(5)

2.1892(1){{cite journal

| last = Mertens

| first = Stephan

|author2=Cristopher Moore

| title = Percolation Thresholds and Fisher Exponents in Hypercubic Lattices

| journal = Physical Review E

| volume = 98

| issue = 2

| pages = 022120

| year = 2018

|arxiv = 1806.08067| doi = 10.1103/PhysRevE.98.022120

| pmid = 30253462

| bibcode = 2018PhRvE..98b2120M

| s2cid = 52821851

}}

2.1938(12)

| 2.26
2.313(3){{cite journal

| last = Paul

| first = Gerald |author2=R. M. Ziff |author3=H. E. Stanley

| title = Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions

| journal = Phys. Rev. E

| year = 2001

| volume = 64

| issue = 2 | pages = 026115

| doi = 10.1103/PhysRevE.64.026115| pmid = 11497659 |arxiv = cond-mat/0101136 |bibcode = 2001PhRvE..64b6115P| s2cid = 18271196 }}


2.3127(6)
2.313(2)
2.3124
2.3142(5)

2.3150(8)

| 2.33
2.412(4)
2.4171
2.419(1)

2.4175(2)

| \frac52 - \frac{\varepsilon}{14} + \frac{313}{2^3 3^2 7^3} \varepsilon^2

| 5/2

d_\text{f}

| 1

| 91/48

| 2.523(4) {{ref|derived|*}}
2.530(4) {{ref|derived|*}}
2.5230(1) {{cite journal

| last = Ballesteros

| first = P. N.

|author2=L. A. Fernández |author3=V. Martín-Mayor |author4=A. Muñoz Sudepe |author5=G. Parisi |author6= J. J. Ruiz-Lorenzo

| title = Scaling corrections: site percolation and Ising model in three dimensions

| journal = Journal of Physics A

| volume = 32

| issue = 1

| year = 1999

| pages = 1–13

| doi = 10.1088/0305-4470/32/1/004|arxiv = cond-mat/9805125 |bibcode = 1999JPhA...32....1B| s2cid = 2787294

}}


2.5226(1) {{cite journal

| last = Deng

| first = Youjin

|author2=Henk W. J. Blöte

| title = Monte Carlo study of the site-percolation model in two and three dimensions

| journal = Phys. Rev. E

| volume = 72

| issue = 1

| year = 2005

| pages = 016126

| doi = 10.1103/PhysRevE.72.016126| pmid = 16090055

|bibcode = 2005PhRvE..72a6126D| url = http://resolver.tudelft.nl/uuid:e987a69f-6dde-4d8d-a616-bfcde4d5bdac

}}


2.52293(10) {{cite journal

| last =Xu

| first = Xiao

| author2=Wang, Junfeng

| author3=Lv, Jian-Ping

| author4 = Deng, Youjin

| title = Simultaneous analysis of three-dimensional percolation models

| journal = Frontiers of Physics

| volume = 9

| issue = 1

| year = 2014

| pages = 113–119

| doi = 10.1007/s11467-013-0403-z |arxiv = 1310.5399 |bibcode = 2014FrPhy...9..113X| s2cid = 119250232

}}

| 3.12(2), 3.05(5), 3.003 {{cite journal

| last = LeClair | first = André

| author2 = Joshua Squires

| year = 2018

| title = Conformal bootstrap for percolation and polymers

| journal = Journal of Statistical Mechanics: Theory and Experiment

| volume = 2018

| issue = 12

| pages = 123105

| arxiv = 1802.08911

| doi = 10.1088/1742-5468/aaf10a

| bibcode = 2018arXiv180208911L

| s2cid = 73674896

}}
3.0472(14)
3.046(7)
3.046(5)
3.0479
3.0437(11)
3.0446(7)

| 3.54(4)
3.69(2){{Cite journal |last1=Jan |first1=N |last2=Hong |first2=D C |last3=Stanley |first3=H E |date=1985-10-21 |title=The fractal dimension and other percolation exponents in four and five dimensions |url=https://iopscience.iop.org/article/10.1088/0305-4470/18/15/006 |journal=Journal of Physics A: Mathematical and General |volume=18 |issue=15 |pages=L935–L939 |doi=10.1088/0305-4470/18/15/006 |bibcode=1985JPhA...18L.935J |issn=0305-4470}}
3.528
3.524(2)
3.5260(14)

| 4 - \frac{10}{21} \varepsilon + \frac{103}{3^3 7^3} \varepsilon^2

| 4

{{math|Ω}}

|

| 0.70(2)
0.77(4) {{cite journal

| last = Kammerer

| first = A.

|author2=F. Höfling |author3=T. Franosch

| title = Cluster-resolved dynamic scaling theory and universal corrections for transport on percolating systems

| journal = Europhys. Lett.

| year = 2008

| volume = 84

| issue = 6

| pages = 66002

| doi = 10.1209/0295-5075/84/66002|bibcode = 2008EL.....8466002K |arxiv = 0811.1414| s2cid = 16581770

}}


0.77(2) {{cite journal

| last = Ziff

| first = R. M.

|author2=F. Babalievski

| title = Site percolation on the Penrose rhomb lattice

| journal = Physica A

| volume = 269

| issue = 2–4

| pages = 201–210

| year = 1999

| doi = 10.1016/S0378-4371(99)00166-1|bibcode = 1999PhyA..269..201Z}}


72/91 {{cite journal

| last = Ziff

| first = R. M.

| title = Correction-to-scaling exponent for two-dimensional percolation

| journal = Phys. Rev. E

| volume = 83

| issue = 2

| pages = 020107

| year = 2011

| doi = 10.1103/PhysRevE.83.020107 | pmid = 21405805

|bibcode = 2011PhRvE..83b0107Z |arxiv = 1101.0807| s2cid = 14750620

}}

{{cite journal

| last = Aharony

| first = Amnon

|author2=Asikainen, Joonas

| title = Fractal dimension and corrections to scaling for critical Potts clusters

| journal = Fractals, Supplementary Issue

| volume = 11

| issue = 1

| pages = 3–7

| year = 2003

| doi = 10.1142/S0218348X03001665| arxiv = cond-mat/0206367

}}


0.44(9) {{cite book |last1=Adler |first1=Joan |last2=Moshe |first2=Moshe|last3=Privman |first3 = Vladimir|editor-last=Deustscher |editor-first=G. |editor-last2=Zallen |editor-first2=R.|editor-last3=Adler |editor-first3=J. |title=Percolation Structures and Processes, Ann. Israel Phys. Soc. 5 |publisher=Adam Hilger, Bristol |date=1983 |pages=397–423 |chapter=Chapter 2: Corrections to Scaling for Percolation}}

| 0.50(9)
0.64(2)
0.73(8)
0.65(2) {{cite journal

| last = Gimel

| first = Jean-Christophe

| author2 = Taco Nicolai

| author3 = Dominique Durand

| title = Size distribution of percolating clusters on cubic lattices

| journal = J. Phys. A: Math. Gen.

| volume = 33

| issue = 43

| pages = 7687–7697

| year = 2000

| doi = 10.1088/0305-4470/33/43/302

| bibcode = 2000JPhA...33.7687G

| s2cid = 121516245

}}


0.60(8)

0.77(3)
0.64(5)

| 0.31(5)
0.5(1)
0.37(4)
0.4008

| 0.27(7)
0.2034
0.210(2)

| \frac{\varepsilon}{4} - \frac{283}{2^2 3^2 7^2} \varepsilon^2

|

{{math|ω}}

|

| 3/2

| 1.26(23)
1.6334
1.62(13)
1.61(5)

| 0.94(15)
1.2198
1.13(10)
1.0(2) {{cite journal

| last = Kozlov

| first = B.

| author2 = M. Laguës

| title = Universality of 3D percolation exponents and first-order corrections to scaling for conductivity exponents

| journal = Physica A

| volume = 389

| issue = 23

| pages = 5339–5346

| year = 2010

| doi = 10.1016/j.physa.2010.08.002| bibcode = 2010PhyA..389.5339K

}}

| 0.96(26)
0.7178

| \varepsilon - \frac{671}{2 \cdot 3^2 7^2} \varepsilon^2 {{cite journal

| last = Houghton

| first = A.

| author2 = J. S. Reeve| author3 = D. J. Wallace

| title = High-order behavior in phi^3 field theories and the percolation problem

| journal =Phys. Rev. B

| volume = 17

| issue = 7

| pages = 2956

| year = 1978

| doi = 10.1103/PhysRevB.17.2956| bibcode =1978PhRvB..17.2956H}}

| 0

t'=t / \nu

|

| 0.9479
0.995(1) {{cite journal

| last = Milovanov

| first = A. V.

| title = Topological proof for the Alexander-Orbach conjecture

| journal =Phys. Rev. E

| volume = 56

| issue = 3

| pages = 2437–2446

| year = 1997

| doi = 10.1103/PhysRevE.56.2437| bibcode =1997PhRvE..56.2437M}}


0.977(8)) {{cite journal

| last = Cen

| first = Wei

| author2 = Dongbing Liu | author3 = Bingquan Mao

| title = Molecular trajectory algorithm for random walks on percolation systems at criticality in two and three dimensions

| journal =Physica A

| volume = 391

| issue = 4

| pages = 925–929

| year = 2012

| doi = 10.1016/j.physa.2011.01.003| bibcode =2012PhyA..391..925C

}}


0.9825(8)

| 2.276(12) {{cite journal

| last = Gingold

| first = David B.

| author2 = C. J. Lobb

| title = Percolative conduction in three dimensions

| journal = Physical Review B

| volume = 42

| issue = 13

| pages = 8220–8224

| year = 1990

| doi = 10.1103/PhysRevB.42.8220| pmid = 9994994

| bibcode = 1990PhRvB..42.8220G

}}


2.26(4) {{cite journal

| last = Normand

| first = Jean-Marie

| author2 = Hans J. Herrmann

| title = Precise determination of the conductivity exponent of 3D percolation using "Percola"

| journal = International Journal of Modern Physics C

| volume = 6

| issue = 6

| pages = 813

| year = 1995

| doi = 10.1142/S0129183195000678| bibcode = 1995IJMPC...6..813N

| arxiv = cond-mat/9602081

| s2cid = 2912863

}}


2.305(15) {{cite journal

| last = Clerc

| first = Jean-Marie

| author2 = V. A. Podolskiy | author3 = A. K. Sarychev

| title = Precise determination of the conductivity exponent of 3D percolation using exact numerical renormalization

| journal = The European Physical Journal B

| volume = 15

| issue = 3

| pages = 507–516

| year = 2000

| doi = 10.1007/s100510051153| bibcode = 2000EPJB...15..507C

| s2cid = 121306901

}}


2.283(3)

|

|

|

| 3

d_w

|

| 2.8784(8)

|

|

|

|

|

d_s

|

| 4/3 {{cite journal

| last = Alexander

| first = S.

| author2 = R. Orbach

| title = Density of states on fractals : 'fractons'

| journal = Journal de Physique Lettres

| volume = 43

| issue = 17

| pages = L625–L631

| year = 1982

| doi = 10.1051/jphyslet:019820043017062500| url = https://hal.archives-ouvertes.fr/jpa-00232103/file/ajp-jphyslet_1982_43_17_625_0.pdf

}}


1.327(1)
1.3100(11)

| 1.32(6) {{cite journal

| last = Argyrakis

| first = P.

| author2 = R. Kopelman

| title = Random walk on percolation clusters

| journal = Physical Review B

| volume = 29

| issue = 1

| pages = 511–514

| year = 1984

| doi = 10.1103/PhysRevB.29.511 | bibcode = 1984PhRvB..29..511A}}


|

|

|

|

d_\mathrm{surf}

|

| 2/3 {{cite journal

| last = Cardy

| first = John

| title = Conformal invariance and surface critical behavior

| journal = Nuclear Physics B

| volume = 240

| issue = 4

| pages = 514–532

| year = 1984

| doi = 10.1016/0550-3213(84)90241-4| bibcode = 1984NuPhB.240..514C

}}

{{cite journal

| last = Vanderzande

| first = C.

| title = Surface fractal dimension of two-dimensional percolation

| journal = J. Phys. A: Math. Gen.

| volume = 21

| issue = 3

| pages = 833–837

| year = 1988

| doi = 10.1088/0305-4470/21/3/039| bibcode = 1988JPhA...21..833V

}}

| | 1.04(5){{cite journal

| last = DeBell

| author2 = J. Essam

| title = Series expansion studies of percolation at a surface

| journal = J. Phys. C: Solid State Phys.

| volume = 13

| issue = 25

| pages = 4811–4821

| year = 1980

| doi = 10.1088/0022-3719/13/25/023

| bibcode = 1980JPhC...13.4811D

}}


1.030(6)
1.0246(4) {{cite journal

| last = Deng

| first = Youjin

| author2 = Henk W. J. Blöte

| title = Surface critical phenomena in three-dimensional percolation

| journal = Phys. Rev. E

| volume = 71

| issue = 1

| pages = 016117

| year = 2005

| doi = 10.1103/PhysRevE.71.016117| pmid = 15697668

| bibcode = 2005PhRvE..71a6117D

| url = http://resolver.tudelft.nl/uuid:367d3e20-73b0-4368-bfaa-a1340c3ab6e7

}}

| 1.32(7){{cite journal

| last = Diehl

| first = H. W.

| author2 = P. M.Lam

| title = Semi-infinite Potts model and percolation at surfaces

| journal = Z. Phys. B

| volume = 74

| issue = 3

| pages = 395–401

| year = 1989

| doi = 10.1007/BF01307889| bibcode = 1989ZPhyB..74..395D

| s2cid = 121559161

}}

| 1.65(3)

| 2 - \frac{5}{21} \varepsilon

| 2

\beta_\mathrm{surf}/\nu = x_1

|

| 1/3

| 0.98(2)

{{cite journal

| last = Hansen | first = A

| author2 = P. M. Lam

| author3 = S. Roux

| year = 1981

| title = Surface order parameter in three-dimensional percolation

| journal = J. Phys. A: Math. Gen.

| volume = 22 | issue = 13 | pages = 2635

| doi = 10.1088/0305-4470/22/13/056

}}
0.970(6)
0.975(4) {{cite journal

| last = Deng | first = Youjin

| author2 = H. Bl\:ote

| year = 2004

| title = Anisotropic limit of the bond-percolation model and conformal invariance in curved geometries

| journal = Phys. Rev. E

| volume = 69 | issue = 6

| pages = 066129

| doi = 10.1103/PhysRevE.69.066129

| pmid = 15244689

| bibcode = 2004PhRvE..69f6129D

}}
0.9754(4)
0.974(2){{cite journal

| last = Baek | first = Seung Ki

| author2 = Petter Minnhagen

| author3 = Beom Jun Kim

| year = 2010

| title = Surface and bulk criticality in midpoint percolation

| journal = Phys. Rev. E

| volume = 81 | issue = 4

| pages = 041108

| doi = 10.1103/PhysRevE.81.041108

| pmid = 20481678

| arxiv = 1004.2622

| bibcode = 2010PhRvE..81d1108B

| s2cid = 18938058

}}

| 1.64(2)

| 2.408(5)

| 3

|

\eta_{\parallel} (surf)

|

| 2/3

| 1.02(12)
1.08(10)

| 1.37(13)

| 1.7(6)

|

|

d_\text{b}

|

| 1.60(5) {{cite journal

| last = Herrmann

| first = H. J.

| author2= D. C. Hong

| author3 = H. E. Stanley

| title = Backbone and elastic backbone of percolation clusters obtained by the new method of 'burning'

| journal = J. Phys. A: Math. Gen.

| volume = 17

| issue = 5

| pages = L261–L266

| year = 1984

| doi = 10.1088/0305-4470/17/5/008 | bibcode = 1984JPhA...17L.261H| s2cid = 16510317

}}
1.64(1) {{cite journal

| last = Rintoul

| first = M. D.

| author2 = H. Nakanishi

| title = A precise determination of the backbone fractal dimension on two-dimensional percolation clusters

| journal = J. Phys. A: Math. Gen.

| volume = 25

| issue = 15

| pages = L945

| year = 1992

| doi = 10.1088/0305-4470/25/15/008| bibcode = 1992JPhA...25L.945R

}}


1.647(4) {{cite journal

| last = Grassberger

| first = Peter

| title = Spreading and backbone dimensions of 2D percolation

| journal = J. Phys. A: Math. Gen.

| volume = 25

| issue = 21

| pages = 5475–5484

| year = 1992

| doi = 10.1088/0305-4470/25/21/009|bibcode = 1992JPhA...25.5475G}}


1.6432(8) {{cite journal

| last = Grassberger

| first = Peter

| title = Conductivity exponent and backbone dimension in 2-d percolation

| journal = Physica A

| volume = 262

| issue = 3–4

| pages = 251–263

| year = 1999

| doi = 10.1016/S0378-4371(98)00435-X | arxiv = cond-mat/9808095| bibcode = 1999PhyA..262..251G| s2cid = 955125

}}


1.6434(2) {{cite journal

| last = Deng

| first = Youjin

| author2= Henk W. J. Blöte

| author3 = Bernard Neinhuis

| title = Backbone exponents of the two-dimensional q-state Potts model: A Monte Carlo investigation

| journal = Phys. Rev. E

| volume = 69

| issue = 2

| pages = 026114

| year = 2004

| doi = 10.1103/PhysRevE.69.026114| pmid = 14995527

| bibcode = 2004PhRvE..69b6114D| url = http://resolver.tudelft.nl/uuid:e59d112a-93de-410e-96aa-b71c217fed77

}}


1.64336(10) {{cite journal

| last = Xu

| first = Xiao

| author2=Wang, Junfeng

| author3= Zhou, Zongzheng

| author4 = Garoni, Timothy M.

| author5 = Deng, Youjin

| title = Geometric structure of percolation clusters

| journal = Physical Review E

| volume = 89

| issue = 1

| year = 2014

| pages = 012120

| doi = 10.1103/PhysRevE.89.012120| pmid = 24580185

| arxiv = 1309.7244| bibcode = 2014PhRvE..89a2120X| s2cid = 25468743

}}


1.64333316328711...*

{{cite arXiv

| last = Nolin

| first = Pierre

| author2= Wei Qian

| author3= Xin Sun

| author4 = Zijie Zhuang

| title = Backbone exponent for two-dimensional percolation

| year = 2023

| class = math.PR

| eprint = 2309.05050

}}

| 1.8, 1.77(7)

1.855(15){{cite journal

| last = Rintoul

| first = M. D.

| author2 = H. Nakanishi

| title = A precise characterization of three-dimensional percolating backbones

| journal = J. Phys. A: Math. Gen.

| volume = 27

| issue = 16

| year = 1994

| pages = 5445–5454

| doi = 10.1088/0305-4470/27/16/011| bibcode = 1994JPhA...27.5445R}}

| 1.95(5) {{cite journal

| last = Moukarzel

| first = C.

| title = A Fast Algorithm for Backbones

| journal = Int. J. Mod. Phys. C

| volume = 9

| issue = 6

| year = 1994

| pages = 887–895

| doi = 10.1142/S0129183198000844|arxiv = cond-mat/9801102| s2cid = 14077176

}}
1.9844(11)

| 2.00(5)
2.0226(27)

|

| 2

d_\text{min}=z

|

| 1.132(2){{cite journal

| last = Grassberger

| first = P.

| title = On the spreading of two-dimensional percolation

| journal = J. Phys. A: Math. Gen.

| volume = 18

| issue = 4

| year = 1985

| pages = L215–L219

| doi = 10.1088/0305-4470/18/4/005| bibcode = 1985JPhA...18L.215G}}

1.130(3) {{cite journal

| last = Herrmann

| first = Hans J.

| author2 = H. Eugene Stanley

| title = The fractal dimension of the minimum path in two- and three-dimensional percolation

| journal = J. Phys. A: Math. Gen.

| volume = 21

| pages = L829–L833

| year = 1988

| issue = 5

| doi = 10.1088/0305-4470/17/5/008 | bibcode = 1984JPhA...17L.261H| s2cid = 16510317

}}

1.1307(4)
1.1303(8){{cite journal

| last = Deng

| first = Youjin |author2=Wei Zhang |author3 = Timothy M. Garoni|author4= Alan D. Sokal|author5=Andrea Sportiello

| title = Some geometric critical exponents for percolation and the random-cluster model

| journal = Physical Review E

| volume = 81

| issue = 2

| pages = 020102(R)

| year = 2010

| doi = 10.1103/PhysRevE.81.020102| pmid = 20365513 |arxiv =0904.3448|bibcode =2010PhRvE..81b0102D| s2cid = 1746746 }}

1.1306(3)

1.130 77(2) {{cite journal

| last = Zhou

| first = Zongzheng |author2=Ji Yang |author3=Youjin Deng |author4=Robert M. Ziff

| title = Shortest-path fractal dimension for percolation in two and three dimensions

| journal = Physical Review E

| volume = 86

| issue = 6

| pages =061101

| year = 2012

| doi = 10.1103/PhysRevE.86.061101| pmid = 23367887 |arxiv = 1110.1955 |bibcode = 2012PhRvE..86a1101G| s2cid = 37986944 }}


| 1.35(5)

1.34(1)

1.374(6){{cite journal

| last = Grassberger

| first = Peter

| title = Numerical studies of critical percolation in three dimensions

| journal = J. Phys. A: Math. Gen.

| volume = 25

| issue = 22

| pages = 5867–5888

| year = 1992

| doi = 10.1088/0305-4470/25/22/015|bibcode = 1992JPhA...25.5867G}}


1.3756(6)

1.3756(3)

1.3755(3)

| 1.607(5)

1.6042(5)

| 1.812(6)

1.8137(16)

|

| 2

\lambda = \mu + 1

|

| 2.1055(10){{cite journal

| last = Grassberger

| first = Peter

| title = Pair connectedness and shortest-path scaling in critical percolation

| journal = J. Phys. A: Math. Gen.

| volume = 32

| issue = 35

| pages = 6233–6238

| year = 1999

| doi = 10.1088/0305-4470/32/35/301 | arxiv = cond-mat/9906309

| bibcode = 1999JPhA...32.6233G

| s2cid = 17663911

}}


2.1056(3)
2.1045(10){{cite journal

| last = Brereton

| first = Tim

| author2 = Christian Hirsch

| author3 = Volker Schmidt

| author4 = Dirk Kroese |author-link4=Dirk Kroese

| title = A critical exponent for shortest-path scaling in continuum percolation

| journal = J. Phys. A: Math. Theor.

| volume = 47

| issue = 50

| pages = 505003

| year = 2014

| doi = 10.1088/1751-8113/47/50/505003| bibcode = 2014JPhA...47X5003B

| s2cid = 14191555

}}


2.105{{Cite journal |last=Brereton |first=Tim |last2=Hirsch |first2=Christian |last3=Schmidt |first3=Volker |last4=Kroese |first4=Dirk |date=2014-12-19 |title=A critical exponent for shortest-path scaling in continuum percolation |url=https://iopscience.iop.org/article/10.1088/1751-8113/47/50/505003 |journal=Journal of Physics A: Mathematical and Theoretical |volume=47 |issue=50 |pages=505003 |doi=10.1088/1751-8113/47/50/505003 |issn=1751-8113}}

|

|

|

|

|

  • For d=2, d_\mathrm{b} = 2-(z^2-1)/12 where z satisfies \sqrt{3}z / 4 + \sin(2 \pi z/3) = 0 near z = 2.3 .

Exponents for protected percolation

In protected percolation, bonds are removed one at a time only from the percolating cluster. Isolated clusters are no longer modified. Scaling relations: \beta' = \beta/(1+\beta) , \gamma' = \gamma/(1+\beta) , \nu' = \nu/(1+\beta) , \tau' = \tau where the primed quantities indicated protected percolation

class="wikitable"
{{math|d}}

! {{math|1}}

! {{math|2}}

! {{math|3}}

! {{math|4}}

! {{math|5}}

! {{math|6 – ε}}

! {{math|6 +}}

{{math|β'}}

|

| 5/41

| 0.288 71(15){{Cite journal|last1=Fayfar|first1=Sean|last2=Bretaña|first2=Alex|last3=Montfrooij|first3=Wouter|date=2021-01-15|title=Protected percolation: a new universality class pertaining to heavily-doped quantum critical systems|journal=Journal of Physics Communications|volume=5|issue=1|pages=015008|doi=10.1088/2399-6528/abd8e9|arxiv=2008.08258|bibcode=2021JPhCo...5a5008F |issn=2399-6528|doi-access=free}}

|

|

|

|

{{math|γ'}}

|

| 86/41

| 1.3066(19)

|

|

|

|

{{math|τ'}}

|

| 187/91

| 2.1659(21)

|

|

|

|

Exponents for directed percolation

Directed percolation (DP) refers to percolation in which the fluid can flow only in one direction along bonds—such as only in the downward direction on a square lattice rotated by 45 degrees. This system is referred to as "1 + 1 dimensional DP" where the two dimensions are thought of as space and time.

\nu_\perp and \nu_\parallel are the transverse (perpendicular) and longitudinal (parallel) correlation length exponents, respectively. Also \zeta = 1/z = \nu_\perp / \nu_\parallel . It satisfies the hyperscaling relation d/z = \eta + 2 \delta .

Another convention has been used for the exponent z, which here we call z', is defined through the relation \langle R^2 \rangle \sim t^{z'} , so that z'= \nu_\parallel/\nu_\perp = 2/z . It satisfies the hyperscaling relation d z' = 2 \eta + 4 \delta .

\delta is the exponent corresponding to the behavior of the survival probability as a function of time: P(t) \sim t^{-\delta} .

\eta (sometimes called \mu) is the exponent corresponding to the behavior of the average number of visited sites at time t (averaged over all samples including ones that have stopped spreading): N(t) \sim t^{-\eta} .

The d(space)+1(time) dimensional exponents are given below.

class="wikitable"
{{math|d+1}}

! {{math|1+1}}

! {{math|2+1}}

! {{math|3+1}}

! {{math|4 – ε}}

{{cite journal

| last1 = Janssen | first1 = H. K.

| last2 = Täuber | first2=U. C.

| year = 2005

| title = The field theory approach to percolation processes

| journal = Annals of Physics

| volume = 315 | issue = 1 | pages = 147–192

| arxiv = cond-mat/0409670

| bibcode = 2005AnPhy.315..147J

| doi = 10.1016/j.aop.2004.09.011

| s2cid = 19033621

}}

! {{math|Mean Field}}

{{math|β}}

| 0.276486(8)

{{cite journal

| last = Jensen | first = I.

| year = 1999

| title = Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice

| journal = J. Phys. A

| volume = 32 | issue = 48 | pages = 5233–5249

| arxiv = cond-mat/9906036

| bibcode = 1999JPhA...32.5233J

| doi = 10.1088/0305-4470/32/28/304

| s2cid = 2681356

}}
0.276 7(3)

| 0.5834(30)
0.580(4)

{{cite journal

| last = Wang | first = Junfeng

| author2=Zongzheng Zhou

| author3=Qingquan Liu

| author4=Timothy M. Garoni

| author5= Youjin Deng

| year = 2013

| title = High-precision Monte Carlo study of directed percolation in (d + 1) dimensions

| journal = Phys. Rev. E

| volume = 88 | issue = 4 | pages = 042102

| arxiv = 1201.3006

| bibcode = 2013PhRvE..88d2102W

| doi = 10.1103/PhysRevE.88.042102

| pmid = 24229111

| s2cid = 43011467

}}

| 0.813(9)

{{cite journal

| last = Jensen | first = I.

| year = 1992

| title = Critical behavior of the three-dimensional contact process

| journal = Phys. Rev. A

| volume = 45 | issue = 2 | pages = R563–R566

| bibcode = 1992PhRvA..45..563J

| doi = 10.1103/PhysRevA.45.R563

| pmid = 9907104

}}
0.818(4)
0.82205

| 1 - \frac{\varepsilon}{6}

| 1

{{math|δ,α }}

| 0.159464(6)
0.15944(2)

| 0.4505(1)

{{cite journal

| last1 = Voigt | first1 = C. A.

| last2=Ziff | first2= R. M.

| year = 1997

| title = Epidemic analysis of the second-order transition in the Ziff-Gulari-Barshad surface-reaction model

| journal = Phys. Rev. E

| volume = 56 | issue = 6 | pages = R6241–R6244

| doi = 10.1103/PhysRevE.56.R6241

| arxiv = cond-mat/9710211

| bibcode = 1997PhRvE..56.6241V

| s2cid = 118952705

}}
0.451(3)

{{cite journal

| last = Grassberger | first = P.

| author2= Y. Zhang

| year = 1996

| title = 'Self-organized' formulation of standard percolation phenomena

| journal = Physica A

| volume = 224 | issue = 1–2 | pages = 169

| doi = 10.1016/0378-4371(95)00321-5

| bibcode = 1996PhyA..224..169G

}}
0.4509(5)
0.4510(4)

0.460(6)

{{cite journal

| last = Grassberger | first = P.

| year = 1989

| title = Directed percolation in 2+1 dimensions

| journal = J. Phys. A: Math. Gen.

| volume = 22 | issue = 17 | pages = 3673–3679

| doi = 10.1088/0305-4470/22/17/032

| bibcode = 1989JPhA...22.3673G

}}

| 0.732(4)

{{cite book

| last = Henkel | first = M.

| author2 = H. Hinrichsen

| author3 = S. Lŭbeck

| date=2008

| title = Non-equilibrium phase transitions, Vol. 1: Absorbing phase transitions

| publisher=Springer, Dordrecht

}}
0.7398(10)
0.73717

| 1 - \frac{\varepsilon}{4}

| 1

{{math|η,θ}}

| 0.313686(8)
0.31370(5)

| 0.2303(4)

{{cite journal

| last = Perlsman | first = E.

| author2= S. Havlin

| year = 2002

| title = Method to estimate critical exponents using numerical studies

| journal = EPL

| volume = 58 | issue = 2 | pages = 176–181

| doi = 10.1209/epl/i2002-00621-7

| bibcode = 2002EL.....58..176P

| s2cid = 67818664

| url = https://semanticscholar.org/paper/502191a5395e90141d8f22da5576825a693cda5a

}}
0.2307(2)
0.2295(10)

0.229(3)

0.214(8)

|0.1057(3)
0.114(4)
0.12084

|

|

{{math|\nu_\parallel }}

| 1.733847(6)
1.733825(25)

{{cite journal

| last = Jensen | first = Iwan

| year = 1996

| title = Low-density series expansions for directed percolation on square and triangular lattices

| journal = J. Phys. A: Math. Gen.

| volume = 29

| issue = 22

| pages = 7013–7040

| doi = 10.1088/0305-4470/29/22/007

| bibcode = 1996JPhA...29.7013J

}}

1.7355(15)

1.73(2)

{{cite journal

| last = Amaral | first = L. A. N.

| author2 = A.-L. Barabási

| author3 = S. V. Buldyrev

| author4 = S. T. Harrington

| author5 = S. Havlin

| author6 = R. Sadr-Lahijany

| author7 = H. E. Stanley

| year = 1995

| title = Avalanches and the directed percolation depinning model: Experiments, simulations, and theory

| journal = Phys. Rev. E

| volume = 51 | issue = 5

| pages = 4655–4673

| doi = 10.1103/PhysRevE.51.4655

| pmid = 9963178

| arxiv = cond-mat/9412047

| bibcode = 1995PhRvE..51.4655A

| s2cid = 9953616

}}

| 1.16(5)
1.287(2)
1.295(6)

|1.106(3)
1.11(1)
1.10571

{{cite journal

| last = Janssen | first = H. K.

| year = 1981

| title = On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state

| journal = Annals of Physics

| volume = 42 | issue = 2 | pages = 151–154

| doi = 10.1007/BF01319549

| bibcode = 1981ZPhyB..42..151J

| s2cid = 120819248

}}

|

|

{{math|\nu_\perp }}

| 1.096854(4)

1.096844(14)
1.0979(10)

| 0.7333(75)
0.729(1)

| 0.584(5)
0.582(2)
0.58360

| \frac12 + \frac{\varepsilon}{16}

| \frac12

{{math|z=2/z'}}

| 1.580745(10)
1.5807(2)

| 1.7660(16)
1.765(3)
1.766(2)
1.7665(2)
1.7666(10)

| 1.88746
1.8990(4)
1.901(5)

| 2 - \frac{\varepsilon}{12}

| 2

{{math|γ}}

| 2.277730(5) = 41/18?,
2.278(2)

{{cite journal

| last = Essam | first = J. W.

| author2= A. J. Guttmann

| author3 = K. De'Bell

| year = 1988

| title = On two-dimensional directed percolation

| journal = J. Phys. A

| volume = 21 | issue =19 | pages = 3815–3832

| doi = 10.1088/0305-4470/21/19/018

| bibcode =1988JPhA...21.3815E

}}

| 1.595(18)

| 1.237(23)

|

| 1

{{math|τ}}

| 2.112(5),

{{cite journal

| last = Dhar | first = Deepak

| author2= Mustansir Barma

| year = 1981

| title = Monte Carlo simulationof directed percolationon a square lattice

| journal = J. Phys. C: Solid State Phys.

| volume = 14 | issue = 1| pages = Ll-L6

| doi = 10.1088/0022-3719/14/1/001

| bibcode = 1981JPhC...14L...1D

}}
2.1077(13),{{cite journal

| last = Owczarek | first = A. L.

| author2= A. Rechnitzer

| author3= R. Brak

| author4= A. J. Guttmann

| year = 1997

| title = On the hulls of directed percolation clusters

| journal = J. Physics A: Math. Gen.

| volume = 30 | issue = 19| pages = 6679

| doi = 10.1088/0305-4470/30/19/011

| bibcode = 1997JPhA...30.6679O

}}
2.10825(8)

|

|

|

|

Scaling relations for directed percolation

\beta = \frac{\tau-2}{\sigma}

\gamma = \frac{3-\tau}{\sigma}

\tau = 2 + \frac{2}{1+\gamma/\beta}

\tilde \tau = \nu_\parallel-\beta

\eta = \gamma/\nu_\parallel-1

d_\mathrm{DP} = 2 - \beta/\nu_\parallel

{{cite journal

| last = Deng | first = Youjin

| author2= Robert M. Ziff

| year = 2022

| title = The elastic and directed percolation backbone

| journal = J. Phys. A: Math. Theor.

| volume = 55 | issue = 24| pages = 244002

| doi = 10.1088/1751-8121/ac6843

| bibcode = 2022JPhA...55x4002D

| arxiv = 1805.08201| s2cid = 73528075

}}

d_{b,\mathrm{DP}} = 2 - 2\beta/\nu_\parallel

\Delta = \beta + \gamma

dz' = 2 \eta + 4 \delta

d/z = \eta + 2 \delta

Exponents for dynamic percolation

For dynamic percolation (epidemic growth of ordinary percolation clusters), we have

P(t) \sim L^{-\beta/\nu} \sim (t^{1/d_\mathrm{min}})^{-\beta/\nu} = t^{-\delta} , implying

\delta = \frac{\beta}{\nu d_\mathrm{min}} = \frac{d - d_f}{d_\mathrm{min}}

For N(t)\sim t^\eta, consider N(\le s) \sim s^{3-\tau} \sim R^{d_f(3-\tau)} \sim t^{d_f(3-\tau)/d_\mathrm{min}} , and taking the derivative with respect to t yields N(t)\sim t^{d_f(3-\tau)/d_\mathrm{min}-1} , implying

\eta = \frac{d_f(3-\tau)}{d_\mathrm{min}}-1 = \frac{2 d_f - d}{d_\mathrm{min}}-1

Also, z = d_\mathrm{min}

Using exponents above, we find

class="wikitable"
{{math|d:}}

! {{math|2}}

! {{math|3}}

! {{math|4}}

! {{math|5}}

! {{math|6 – ε}}

! {{math|Mean Field}}

{{math|\delta}}

| 0.09212

| 0.34681

| 0.59556

| 0.8127

|

| 1

{{math|\eta,\mu}}

| 0.584466

| 0.48725

| 0.30233

| 0.1314

|

| 0

See also

Notes

{{reflist|group=note}}

References

{{reflist}}

= Further reading =

  • {{citation

| last1 = Stauffer

| first1 = D.

| last2 = Aharony

| first2 = A.

| title = Introduction to Percolation Theory

| edition = 2nd

| publisher = CRC Press

| year = 1994

| isbn = 978-0-7484-0253-3}}

Category:Percolation theory

Category:Critical phenomena

Category:Random graphs

Category:Critical exponents (phase transitions)