Period-luminosity relation
{{Short description|Astronomical principle}}
File:Storm2011 Cepheid Data.svgs.{{cite journal |last1=Storm |first1=J. |last2=Gieren |first2=W. |last3=Fouqué |first3=P. |last4=Barnes |first4=T. G. |last5=Pietrzyński |first5=G. |last6=Nardetto |first6=N. |last7=Weber |first7=M. |last8=Granzer |first8=T. |last9=Strassmeier |first9=K. G. |title=Calibrating the Cepheid period-luminosity relation from the infrared surface brightness technique: I. The p-factor, the Milky Way relations, and a universal K-band relation |journal=Astronomy & Astrophysics |date=October 2011 |volume=534 |pages=A94 |doi=10.1051/0004-6361/201117155 |publisher=EDP Sciences|arxiv=1109.2017 |bibcode=2011A&A...534A..94S |s2cid=96456751 }}
In astronomy, a period-luminosity relation is a relationship linking the luminosity of pulsating variable stars with their pulsation period.
The best-known relation is the direct proportionality law holding for Classical Cepheid variables, sometimes called the Leavitt Law.{{cite news |last=Johnson |first=Kirk |title=Overlooked No More: Henrietta Leavitt, Who Unraveled Mysteries of the Stars - The portrait that emerged from her discovery, called Leavitt's Law, showed that the universe was hundreds of times bigger than astronomers had imagined. |url=https://www.nytimes.com/2024/03/27/obituaries/henrietta-leavitt-overlooked.html |date=March 27, 2024 |work=The New York Times |url-status=live |archiveurl=https://archive.today/20240327232341/https://www.nytimes.com/2024/03/27/obituaries/henrietta-leavitt-overlooked.html |archivedate=March 27, 2024 |accessdate=March 28, 2024 }}{{cite press release |title=A century of cepheids: Two astronomers, a hundred years apart, use stars to measure the Universe |url=https://www.sdss.org/press-releases/cepheids/ |publisher=Sloan Digital Sky Survey |date=9 January 2018 |access-date=23 September 2019}}{{cite web |title=Society Resolutions |url=https://aas.org/about/governance/society-resolutions#Leavitt |publisher=American Astronomical Society |date=8 March 2021 |archive-url=https://web.archive.org/web/20210308130231/https://aas.org/about/governance/society-resolutions#Leavitt |archive-date=8 March 2021 |url-status=dead}} Discovered in 1908 by Henrietta Swan Leavitt, the relation established Cepheids as foundational indicators of cosmic benchmarks for scaling galactic and extragalactic distances.{{cite journal |arxiv=astro-ph/9908317 |bibcode=1999AcA....49..223U |title=The Optical Gravitational Lensing Experiment. Cepheids in the Magellanic Clouds. IV. Catalog of Cepheids from the Large Magellanic Cloud |author1=Udalski, A. |author2=Soszynski, I. |author3=Szymanski, M. |author4=Kubiak, M. |author5=Pietrzynski, G. |author6=Wozniak, P. |author7=Zebrun, K. |volume=49 |date=1999 |pages=223–317 |journal=Acta Astronomica}}{{cite journal |arxiv=0808.2210 |bibcode=2008AcA....58..163S |title=The Optical Gravitational Lensing Experiment. The OGLE-III Catalog of Variable Stars. I. Classical Cepheids in the Large Magellanic Cloud |author1=Soszynski, I. |author2=Poleski, R. |author3=Udalski, A. |author4=Szymanski, M. K. |author5=Kubiak, M. |author6=Pietrzynski, G. |author7=Wyrzykowski, L. |author8=Szewczyk, O. |author9=Ulaczyk, K. |volume=58 |date=2008 |pages=163 |journal=Acta Astronomica }}{{cite journal |arxiv=astro-ph/0012376 |bibcode=2001ApJ...553...47F |doi=10.1086/320638 |title=Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant |date=2001 |last1=Freedman |first1=Wendy L. |last2=Madore |first2=Barry F. |last3=Gibson |first3=Brad K. |last4=Ferrarese |first4=Laura |last5=Kelson |first5=Daniel D. |last6=Sakai |first6=Shoko |last7=Mould |first7=Jeremy R. |last8=Kennicutt, Jr. |first8=Robert C. |last9=Ford |first9=Holland C. |last10=Graham |first10=John A. |last11=Huchra |first11=John P. |last12=Hughes |first12=Shaun M. G. |last13=Illingworth |first13=Garth D. |last14=Macri |first14=Lucas M. |last15=Stetson |first15=Peter B. |journal=The Astrophysical Journal |volume=553 |issue=1 |pages=47–72|s2cid=119097691 }}{{cite journal |arxiv=0806.3018 |bibcode=2008A&ARv..15..289T |doi=10.1007/s00159-008-0012-y |title=The expansion field: the value of H 0 |date=2008 |last1=Tammann |first1=G. A. |last2=Sandage |first2=A. |last3=Reindl |first3=B. |journal=The Astronomy and Astrophysics Review |volume=15 |issue=4 |pages=289–331|s2cid=18463474 }}{{cite journal |arxiv=0903.4206 |bibcode=2009MNRAS.398..263M |doi=10.1111/j.1365-2966.2009.15096.x |title=Characteristics of the Galaxy according to Cepheids |date=2009 |last1=Majaess |first1=D. J. |last2=Turner |first2=D. G. |last3=Lane |first3=D. J. |journal=Monthly Notices of the Royal Astronomical Society |volume=398 |issue=1 |pages=263–270|doi-access=free |s2cid=14316644 }}{{cite journal |arxiv=1004.1856 |bibcode=2010ARA&A..48..673F |title=The Hubble Constant |author1=Freedman, Wendy L. |author2=Madore, Barry F. |volume=48 |date=2010 |pages=673–710 |journal=Annual Review of Astronomy and Astrophysics |doi=10.1146/annurev-astro-082708-101829|s2cid=119263173 }}
The physical model explaining the Leavitt's law for classical cepheids is called kappa mechanism.