Phyllodesmium

{{Short description|Genus of gastropods}}

{{Automatic taxobox

| image = Phyllodesmium briareum 2.jpg

| image_caption = A live individual of Phyllodesmium briareum, head end towards the front

| synonyms = * Ennoia Bergh, 1896

  • Myrrhine Bergh, 1905

| display_parents = 5

| taxon = Phyllodesmium

| authority = Ehrenberg, 1831 (1828)Ehrenberg C. G. (1831). Sym. Phys., Moll., sign. h. (plates are from 1828.)

| type_species = Phyllodesmium hyalinum Ehrenberg, 1831

| diversity_link =

| diversity = 27 species (in this list)

}}

Phyllodesmium is a genus of predatory sea slugs, aeolid nudibranchs, marine gastropod molluscs in the family Myrrhinidae.Bouchet, P. (2012). Phyllodesmium Ehrenberg, 1831. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=204424 on 2012-06-05

These nudibranchs occur in the tropical Indo-Pacific Ocean and warm temperate waters of Japan, Tasmania and South Africa.

The nudibranchs in this genus often show extraordinary mimicry, each species very closely resembling its prey species, which are octocorals, a kind of soft coral.Moore E. & Gosliner T. (18 August 2009). [http://www.mapress.com/zootaxa/2009/f/zt02201p048.pdf "Three new species of Phyllodesmium Ehrenberg (Gastropoda: Nudibranchia: Aeolidoidea), and a revised phylogenetic analysis"]. Zootaxa 2201: 30–48.

Some of the species are also unusual in that they are able to utilize zooxanthellae from their prey, in a symbiotic relationship that provides them with extra nutrition from photosynthesis, hence they are commonly called "solar-powered" sea slugs (also see the Sacoglossa).

Species

Species within the genus Phyllodesmium include:

{{div col|colwidth=30em}}

{{div col end}}

;Species brought into synonymy:

  • Phyllodesmium xeniae Gohar & Aboul-Ela, 1957: synonym of Phyllodesmium hyalinum Ehrenberg, 1831

;Species with unknown placement:

File:Phyllodesmium crypticum.jpg|Phyllodesmium crypticum

File:Phyllodesmium kabiranum.jpg|Phyllodesmium kabiranum

File:Phyllodesmium longicirrum.jpg|Phyllodesmium longicirrum

Ecology

File:Phyllodesmium briareum and Briareum violacea.jpg (one specimen at the bottom of the image) and its food species, the coral Briareum violaceum (at the top of the image), showing how closely the nudibranch resembles its food source. It camouflages itself well from predators.]]

Species of the genus Phyllodesmium are carnivorous and feed on octocorals (for example, in the family Xeniidae). This is a unique feature within the Aeolidida.

Some of these nudibranchs contain endosymbiotic zooxanthellae, which are in effect single-celled plants. Zooxanthellae are one kind of dinoflagellate protists and they live only within other organisms, most notably in corals. The nudibranchs in this genus obtain zooxanthellae from their food, the soft corals.

As they previously did within the corals, the zooxanthellae provide the nudibranch with a supply of food in the form of the products of photosynthesis. The nudibranchs are able to avoid digesting these protists, and sequester them in their tissues instead. This process is somewhat reminiscent of the relationship between the Sacoglossan sea slugs and the living chloroplasts that they are able to sequester. Both these nudibranchs and the sacoglossans have been referred to as "solar-powered sea slugs".Rudman, W.B., 1998 (October 11) [http://www.seaslugforum.net/factsheet/solarpow Solar-powered sea slugs.] [In] Sea Slug Forum. Australian Museum, Sydney.

Many other species of nudibranchs have aposematic coloring in order to warn away would-be predators, giving them brilliant colors. This is because they contain in their tissues many examples of an organ called the cnidosac[http://www.seaslugforum.net/factsheet.cfm?base=defcnid Aeolid cnidosac] {{Webarchive|url=https://web.archive.org/web/20091109140340/http://www.seaslugforum.net/factsheet.cfm?base=defcnid |date=2009-11-09 }}. Sea Slug Forum, accessed 26 September 2009. which contains undischarged cnidocytes (also known as nematocysts). These are stinging cells that the nudibranchs obtain from the tissues of the cnidarians they eat. Thus, the very brightly colored nudibranchs are quite unpalatable for predators. Some nudibranchs, such as Glaucus atlanticus, are even capable of giving humans painful stings.

The nudibranchs in this genus, however, use an opposite tactic. They do not have cnidosacs, and thus they would in reality be palatable to eat for various predators, however they are almost all extremely well camouflaged, so that they resemble almost perfectly the soft coral on which they live and feed, not only in color but also in form. The shape and form of the nudibranch's cerata in each individual species very closely resembles the tentacles of the species of soft coral polyp on which that species feeds. This excellent camouflage also makes these nudibranchs difficult for humans to notice, and it is likely that several species in this genus have not yet been discovered, described, and named scientifically.

Another tactic these nudibranchs use to protect themselves is that when threatened by a predator, they can drop one or more of their cerata. These organs will wiggle for some time after being cast off, hopefully distracting a predator away from the animal itself.[http://www.seaslugforum.net/factsheet.cfm?base=phylmagn ''Phyllodesmium magnum Rudman, 1991] {{webarchive|url=https://web.archive.org/web/20120313231558/http://www.seaslugforum.net/factsheet.cfm?base=phylmagn |date=2012-03-13 }}. Sea Slug Forum, accessed 26 September 2009. This is an example of a defensive technique known as autotomy.

A molecular phylogeny study of Phyllodesmium by Moore and Gosliner (2011)Moore E. J. & Gosliner T. M. (2011). "Molecular phylogeny and evolution of symbiosis in a clade of Indopacific nudibranchs". Molecular Phylogenetics and Evolution Volume 58, Issue 1, January 2011, Pages 116–123 {{doi|10.1016/j.ympev.2010.11.008}}. accessed 17 December 2010. demonstrated that the non-symbiotic species of Phyllodesmium evolved separately from the symbiotic species of Phyllodesmium. However, there is one exception: Phyllodesmium karenae evolved in the symbiotic clade and subsequently lost its zooxanthellae.

References

{{Reflist}}