Plancherel–Rotach asymptotics

{{Short description|Asymptotic values of Hermite or Laguerre polynomials}}

The Plancherel–Rotach asymptotics are asymptotic results for orthogonal polynomials. They are named after the Swiss mathematicians Michel Plancherel and his PhD student Walter Rotach, who first derived the asymptotics for the Hermite polynomial and Laguerre polynomial. Nowadays asymptotic expansions of this kind for orthogonal polynomials are referred to as Plancherel–Rotach asymptotics or of Plancherel–Rotach type.{{cite thesis|title=Reihenentwicklungen einer willkürlichen Funktion nach Hermite'schen und Laguerre'schen Polynomen|first=Walter|last=Rotach|date=1925|doi=10.3929/ethz-a-000092029|publisher=ETH Zurich|hdl=20.500.11850/133495 }}

The case for the associated Laguerre polynomial was derived by the Swiss mathematician Egon Möcklin, another PhD student of Plancherel and George Pólya at ETH Zurich.{{cite thesis|first=Egon|last=Möcklin|title=Asymptotische Entwicklungen der Laguerreschen Polynome|date=1934|publisher=ETH Zurich|doi=10.3929/ethz-a-000092417|hdl=20.500.11850/133650 }}

Hermite polynomials

Let H_n(x) denote the n-th Hermite polynomial. Let \epsilon and \omega be positive and fixed, then

  • for x =(2n+1)^{1/2}\cos \varphi and \epsilon \leq \varphi \leq \pi -\epsilon

::

e^{-x^2/2}H_n(x)

=2^{n/2+1/4}(n!)^{1/2}(\pi n)^{-1/4}(\sin \varphi)^{-1/2}

\bigg\{\sin\left[\left(\tfrac{n}{2}+\tfrac{1}{4}\right)(\sin 2\varphi-2\varphi)+3\tfrac{ \pi}{4}\right]+\mathcal{O}(n^{-1})\bigg\}

  • for x =(2n+1)^{1/2}\cosh \varphi and \epsilon \leq \varphi \leq \omega

::

e^{-x^2/2}H_n(x)

=2^{n/2-3/4}(n!)^{1/2}(\pi n)^{-1/4}(\sinh \varphi)^{-1/2}

\exp\left[\left(\tfrac{n}{2}+\tfrac{1}{4}\right)(2\varphi-\sinh 2\varphi)\right]

\big\{1+\mathcal{O}(n^{-1})\big\}

  • for x =(2n+1)^{1/2}-2^{-1/2}3^{-1/3}n^{-1/6}t and t complex and bounded

::e^{-x^2/2}H_n(x)

=3^{1/3}\pi^{-3/4}2^{n/2+1/4}(n!)^{1/2}n^{-1/12}

\bigg\{A(t)+\mathcal{O}\left(n^{-{2/3}}\right)\bigg\}

where A(t) = \pi \operatorname{Ai}(-3^{-1/3}t) and \operatorname{Ai} denotes the Airy function.{{cite book|first1=Gábor|last1=Szegő|title=Orthogonal polynomials|volume=4|publisher=American Mathematical Society|place=Providence, Rhode Island|pages=200–201|date=1975|isbn=0-8218-1023-5}}

(Associated) Laguerre polynomials

Let L^{(\alpha )}_n(x) denote the n-th associate Laguerre polynomial. Let \alpha be arbitrary and real, \epsilon and \omega be positive and fixed, then

  • for x =(4n+2\alpha + 2)\cos^2\varphi and \epsilon\leq \varphi \leq \tfrac{\pi}{2} -\epsilon n^{-1/2}

::

e^{-x/2}L^{(\alpha )}_n(x)

=(-1)^{n}(\pi \sin \varphi)^{-1/2}x^{-\alpha/2-1/4}n^{\alpha/2-1/4}

\big\{\sin\left[\left(n+\tfrac{\alpha+1}{2}\right)(\sin 2\varphi-2\varphi)+3\pi/4\right] +(nx)^{-1/2}\mathcal{O}(1)\big\}

  • for x =(4n+2\alpha + 2)\cosh^2\varphi and \epsilon\leq \varphi \leq \omega

::

e^{-x/2}L^{(\alpha )}_n(x)

=\tfrac{1}{2}(-1)^{n}(\pi \sinh \varphi )^{-1/2}x^{-\alpha/2-1/4}n^{\alpha /2-1/4}

\exp\left[\left(n+\tfrac{\alpha+1}{2}\right)(2\varphi-\sinh 2\varphi)\right]

\{1+\mathcal{O}\left(n^{-1}\right)\}

  • for x =4n+2\alpha + 2 -2(2n/3)^{1/3}t and t complex and bounded

::e^{-x/2}L^{(\alpha)}_n(x)

=(-1)^n\pi^{-1}2^{-\alpha-1/3}3^{1/3}n^{-1/3}

\bigg\{A(t)+\mathcal{O}\left(n^{-2/3}\right)\bigg\}

where A(t) = \pi \operatorname{Ai}(-3^{-1/3}t) and \operatorname{Ai} denotes the Airy function.{{cite book|first1=Gábor|last1=Szegő|title=Orthogonal polynomials|volume=4|publisher=American Mathematical Society|place=Providence, Rhode Island|pages=200–201|date=1975|isbn=0-8218-1023-5}}

Literature

  • {{cite book|first1=Gábor|last1=Szegő|title=Orthogonal polynomials|volume=4|publisher=American Mathematical Society|place=Providence, Rhode Island|date=1975|isbn=0-8218-1023-5}}

References