Poly-Bernoulli number

{{Short description|Integer sequence}}

In mathematics, poly-Bernoulli numbers, denoted as B_{n}^{(k)}, were defined by M. Kaneko as

:{Li_{k}(1-e^{-x}) \over 1-e^{-x}}=\sum_{n=0}^{\infty}B_{n}^{(k)}{x^{n}\over n!}

where Li is the polylogarithm. The B_{n}^{(1)} are the usual Bernoulli numbers.

Moreover, the Generalization of Poly-Bernoulli numbers with a,b,c parameters defined as follows

:{Li_{k}(1-(ab)^{-x})\over b^x-a^{-x}}c^{xt}=\sum_{n=0}^{\infty}B_{n}^{(k)}(t;a,b,c){x^{n}\over n!}

where Li is the polylogarithm.

Kaneko also gave two combinatorial formulas:

:B_{n}^{(-k)}=\sum_{m=0}^{n}(-1)^{m+n}m!S(n,m)(m+1)^{k},

:B_{n}^{(-k)}=\sum_{j=0}^{\min(n,k)} (j!)^{2}S(n+1,j+1)S(k+1,j+1),

where S(n,k) is the number of ways to partition a size n set into k non-empty subsets (the Stirling number of the second kind).

A combinatorial interpretation is that the poly-Bernoulli numbers of negative index enumerate the set of n by k (0,1)-matrices uniquely reconstructible from their row and column sums. Also it is the number of open tours by a biased rook on a board \underbrace{1\cdots1}_{n}\underbrace{0\cdots0}_{k} (see A329718 for definition).

The Poly-Bernoulli number B_{k}^{(-k)} satisfies the following asymptotic:{{citation

| last1 = Khera | first1 = J.

| last2 = Lundberg | first2 = E.

| last3 = Melczer | first3 = S.

| issue = 4

| journal = Advances in Applied Mathematics

| title = Asymptotic Enumeration of Lonesum Matrices

| url = https://www.sciencedirect.com/science/article/abs/pii/S0196885820301214

| volume = 123

| year = 2021| page = 102118

| doi = 10.1016/j.aam.2020.102118

| arxiv = 1912.08850

| s2cid = 209414619

}}.

B_{k}^{(-k)} \sim (k!)^2 \sqrt{\frac{1}{k\pi(1-\log 2)}}\left( \frac{1}{\log 2} \right) ^{2k+1}, \quad \text{as } k \rightarrow \infty.

For a positive integer n and a prime number p, the poly-Bernoulli numbers satisfy

:B_n^{(-p)} \equiv 2^n \pmod p,

which can be seen as an analog of Fermat's little theorem. Further, the equation

:B_x^{(-n)} + B_y^{(-n)} = B_z^{(-n)}

has no solution for integers x, y, z, n > 2; an analog of Fermat's Last Theorem.

Moreover, there is an analogue of Poly-Bernoulli numbers (like Bernoulli numbers and Euler numbers) which is known as Poly-Euler numbers.

See also

References

{{reflist}}

  • {{citation

| last1 = Arakawa | first1 = Tsuneo

| last2 = Kaneko | first2 = Masanobu

| journal = Nagoya Mathematical Journal

| mr = 1684557

| pages = 189–209

| title = Multiple zeta values, poly-Bernoulli numbers, and related zeta functions

| url = http://projecteuclid.org/euclid.nmj/1114630825

| volume = 153

| year = 1999a| doi = 10.1017/S0027763000006954

| s2cid = 53476063

| doi-access = free

| hdl = 2324/20424

| hdl-access = free

}}.

  • {{citation

| last1 = Arakawa | first1 = Tsuneo

| last2 = Kaneko | first2 = Masanobu

| issue = 2

| journal = Commentarii Mathematici Universitatis Sancti Pauli

| mr = 1713681

| pages = 159–167

| title = On poly-Bernoulli numbers

| volume = 48

| year = 1999b}}

  • {{citation

| last = Brewbaker | first = Chad

| journal = Integers

| mr = 2373086

| page = A02, 9

| title = A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues

| url = http://www.integers-ejcnt.org/vol8.html

| volume = 8

| year = 2008}}.

  • {{citation

| last1 = Hamahata | first1 = Y.

| last2 = Masubuchi | first2 = H.

| issue = 4

| journal = Journal of Integer Sequences

| mr = 2304359

| at = Article 07.4.1

| title = Special multi-poly-Bernoulli numbers

| volume = 10

| year = 2007| bibcode = 2007JIntS..10...41H

}}.

  • {{citation

| last = Kaneko | first = Masanobu

| doi = 10.5802/jtnb.197

| issue = 1

| journal = Journal de Théorie des Nombres de Bordeaux

| mr = 1469669

| pages = 221–228

| title = Poly-Bernoulli numbers

| url = http://jtnb.cedram.org/item?id=JTNB_1997__9_1_221_0

| volume = 9

| year = 1997| hdl = 2324/21658

| doi-access = free

| hdl-access = free

}}.

Category:Integer sequences

Category:Enumerative combinatorics