Polyiodide
{{Short description|Anions composed of many iodine atoms}}
The polyiodides are a class of polyhalogen anions composed entirely of iodine atoms.{{cite book|title=Inorganic Chemistry|last1=Housecroft|first1=Catherine E.|last2=Sharpe|first2=Alan G.|publisher=Pearson|year=2008|isbn=978-0-13-175553-6|edition=3rd|page=547|chapter=Chapter 17: The group 17 elements}}{{Citation |last=Kloo |first=Lars |title=Catenated compounds in Group 17—Polyhalides |date=2021 |url=https://linkinghub.elsevier.com/retrieve/pii/B9780128231449000133 |work=Reference Module in Chemistry, Molecular Sciences and Chemical Engineering |pages=1021–1049 |publisher=Elsevier |language=en |doi=10.1016/b978-0-12-823144-9.00013-3 |isbn=978-0-12-409547-2 |s2cid=242567501 |access-date=2022-03-28}} The most common member is the triiodide ion, {{chem|I|3|−}}. Other known larger polyiodides include [I4]2−, [I5]−, [I6]2−, [I7]−, [I8]2−, [I9]−, [I10]2−, [I10]4−, [I11]3−, [I12]2−, [I13]3−, [I14]4-, [I16]2−, [I22]4−, [I26]3−, [I26]4−, [I28]4− and [I29]3−. All these can be considered as formed from the interaction of the I–, I2, and {{chem|I|3|−}} building blocks.
Preparation
The polyiodides can be made by addition of stoichiometric amounts of I2 to solutions containing I− and {{chem|I|3|−}}, with the presence of large countercations to stabilize them. For example, KI3·H2O can be crystallized from a saturated solution of KI when a stoichiometric amount of I2 is added and cooled.{{cite encyclopedia|title=Potassium triiodide|encyclopedia=Handbook of Preparative Inorganic Chemistry|edition=2nd|editor-first=G.|editor-last=Brauer|publisher=Academic Press|date=1963|location=New York|volume=1|page=294}}
Structure
File:Solid state structure of the (I11)3- ion in (((16)aneS4)PdIPd((16)aneS4))(I11).png]
File:Solid state structure of (I26)4- in (DMFc)4(I26).png]
Polyiodides adopt diverse structures. Most can be considered as associations of I2, I−, and {{chem|I|3|−}} units. Discrete polyiodides are usually linear. The more complex two- or three-dimensional network structures of chains and cages are formed as the ions interact with each other, with their shapes depending on their associated cations quite strongly, a phenomenon named dimensional caging.{{Cite journal |last1=Svensson |first1=Per H. |last2=Gorlov |first2=Mikhail |last3=Kloo |first3=Lars |date=2008-12-15 |title=Dimensional Caging of Polyiodides |url=https://pubs.acs.org/doi/10.1021/ic801820s |journal=Inorganic Chemistry |language=en |volume=47 |issue=24 |pages=11464–11466 |doi=10.1021/ic801820s |pmid=19053351 |issn=0020-1669}}{{Cite journal |last1=García |first1=Marcos D. |last2=Martí-Rujas |first2=Javier |last3=Metrangolo |first3=Pierangelo |last4=Peinador |first4=Carlos |last5=Pilati |first5=Tullio |last6=Resnati |first6=Giuseppe |last7=Terraneo |first7=Giancarlo |last8=Ursini |first8=Maurizio |date=2011 |title=Dimensional caging of polyiodides: cation-templated synthesis using bipyridinium salts |url=http://xlink.rsc.org/?DOI=c0ce00860e |journal=CrystEngComm |language=en |volume=13 |issue=13 |pages=4411 |doi=10.1039/c0ce00860e |issn=1466-8033}} The table below lists the polyiodide salts which have been structurally characterized, along with their counter-cation.{{cite book
| title = Encyclopedia of Inorganic Chemistry | edition = 2nd
| chapter = Chlorine, Bromine, Iodine, & Astatine: Inorganic Chemistry
| first = R. Bruce | last = King
| publisher = Wiley
| year = 2005
| isbn = 9780470862100
| page = 747
}}
Reactivity
Polyiodide compounds are generally sensitive to light.
Triiodide, {{chem|I|3|−}}, undergoes unimolecular photodissociation.{{Cite journal |last1=Hoops |first1=Alexandra A. |last2=Gascooke |first2=Jason R. |last3=Faulhaber |first3=Ann Elise |last4=Kautzman |first4=Kathryn E. |last5=Neumark |first5=Daniel M. |date=May 2004 |title=Two- and three-body photodissociation of gas phase I3− |url=http://aip.scitation.org/doi/10.1063/1.1691017 |journal=The Journal of Chemical Physics |language=en |volume=120 |issue=17 |pages=7901–7909 |doi=10.1063/1.1691017 |pmid=15267705 |hdl=2440/34955 |issn=0021-9606|hdl-access=free }}{{Cite journal |last1=Nakanishi |first1=Ryuzo |last2=Saitou |first2=Naoya |last3=Ohno |first3=Tomoyo |last4=Kowashi |first4=Satomi |last5=Yabushita |first5=Satoshi |last6=Nagata |first6=Takashi |date=2007-05-28 |title=Photodissociation of gas-phase I3−: Comprehensive understanding of nonadiabatic dissociation dynamics |url=http://aip.scitation.org/doi/10.1063/1.2736691 |journal=The Journal of Chemical Physics |language=en |volume=126 |issue=20 |pages=204311 |doi=10.1063/1.2736691 |pmid=17552766 |issn=0021-9606}} Polyiodide has been used to improve the scalability in the synthesis of halide perovskite photovoltaic materials.{{Cite journal |last1=Turkevych |first1=Ivan |last2=Kazaoui |first2=Said |last3=Belich |first3=Nikolai A. |last4=Grishko |first4=Aleksei Y. |last5=Fateev |first5=Sergey A. |last6=Petrov |first6=Andrey A. |last7=Urano |first7=Toshiyuki |last8=Aramaki |first8=Shinji |last9=Kosar |first9=Sonya |last10=Kondo |first10=Michio |last11=Goodilin |first11=Eugene A. |date=January 2019 |title=Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics |url=https://www.nature.com/articles/s41565-018-0304-y |journal=Nature Nanotechnology |language=en |volume=14 |issue=1 |pages=57–63 |doi=10.1038/s41565-018-0304-y |pmid=30478274 |s2cid=53784226 |issn=1748-3395}}
Conductivity
Solid state compounds containing linear-chain polyiodide ions exhibit enhanced conductivity{{Cite journal |last1=Alvarez |first1=Santiago |last2=Novoa |first2=Juan |last3=Mota |first3=Fernando |date=1986-12-26 |title=The mechanism of electrical conductivity along polyhalide chains |url=https://linkinghub.elsevier.com/retrieve/pii/0009261486871184 |journal=Chemical Physics Letters |language=en |volume=132 |issue=6 |pages=531–534 |doi=10.1016/0009-2614(86)87118-4}}{{Cite journal |last1=Yu |first1=Hongtao |last2=Yan |first2=Lijia |last3=He |first3=Yaowu |last4=Meng |first4=Hong |last5=Huang |first5=Wei |date=2017 |title=An unusual photoconductive property of polyiodide and enhancement by catenating with 3-thiophenemethylamine salt |url=http://xlink.rsc.org/?DOI=C6CC08595D |journal=Chemical Communications |language=en |volume=53 |issue=2 |pages=432–435 |doi=10.1039/C6CC08595D |pmid=27965990 |issn=1359-7345}} than their simple iodide counterparts. The conductivity can be drastically modified by external pressure, which changes the interatomic distances between iodine moieties and the charge distribution.{{Cite journal |last1=Poręba |first1=Tomasz |last2=Ernst |first2=Michelle |last3=Zimmer |first3=Dominik |last4=Macchi |first4=Piero |last5=Casati |first5=Nicola |date=2019-05-13 |title=Pressure-Induced Polymerization and Electrical Conductivity of a Polyiodide |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201901178 |journal=Angewandte Chemie International Edition |language=en |volume=58 |issue=20 |pages=6625–6629 |doi=10.1002/anie.201901178 |pmid=30844119 |s2cid=73514885 |issn=1433-7851}}