Polyiodide

{{Short description|Anions composed of many iodine atoms}}

The polyiodides are a class of polyhalogen anions composed entirely of iodine atoms.{{cite book|title=Inorganic Chemistry|last1=Housecroft|first1=Catherine E.|last2=Sharpe|first2=Alan G.|publisher=Pearson|year=2008|isbn=978-0-13-175553-6|edition=3rd|page=547|chapter=Chapter 17: The group 17 elements}}{{Citation |last=Kloo |first=Lars |title=Catenated compounds in Group 17—Polyhalides |date=2021 |url=https://linkinghub.elsevier.com/retrieve/pii/B9780128231449000133 |work=Reference Module in Chemistry, Molecular Sciences and Chemical Engineering |pages=1021–1049 |publisher=Elsevier |language=en |doi=10.1016/b978-0-12-823144-9.00013-3 |isbn=978-0-12-409547-2 |s2cid=242567501 |access-date=2022-03-28}} The most common member is the triiodide ion, {{chem|I|3|−}}. Other known larger polyiodides include [I4]2−, [I5], [I6]2−, [I7], [I8]2−, [I9], [I10]2−, [I10]4−, [I11]3−, [I12]2−, [I13]3−, [I14]4-, [I16]2−, [I22]4−, [I26]3−, [I26]4−, [I28]4− and [I29]3−. All these can be considered as formed from the interaction of the I, I2, and {{chem|I|3|−}} building blocks.

Preparation

The polyiodides can be made by addition of stoichiometric amounts of I2 to solutions containing I and {{chem|I|3|−}}, with the presence of large countercations to stabilize them. For example, KI3·H2O can be crystallized from a saturated solution of KI when a stoichiometric amount of I2 is added and cooled.{{cite encyclopedia|title=Potassium triiodide|encyclopedia=Handbook of Preparative Inorganic Chemistry|edition=2nd|editor-first=G.|editor-last=Brauer|publisher=Academic Press|date=1963|location=New York|volume=1|page=294}}

Structure

File:Solid state structure of the (I11)3- ion in (((16)aneS4)PdIPd((16)aneS4))(I11).png]

File:Solid state structure of (I26)4- in (DMFc)4(I26).png]

Polyiodides adopt diverse structures. Most can be considered as associations of I2, I, and {{chem|I|3|−}} units. Discrete polyiodides are usually linear. The more complex two- or three-dimensional network structures of chains and cages are formed as the ions interact with each other, with their shapes depending on their associated cations quite strongly, a phenomenon named dimensional caging.{{Cite journal |last1=Svensson |first1=Per H. |last2=Gorlov |first2=Mikhail |last3=Kloo |first3=Lars |date=2008-12-15 |title=Dimensional Caging of Polyiodides |url=https://pubs.acs.org/doi/10.1021/ic801820s |journal=Inorganic Chemistry |language=en |volume=47 |issue=24 |pages=11464–11466 |doi=10.1021/ic801820s |pmid=19053351 |issn=0020-1669}}{{Cite journal |last1=García |first1=Marcos D. |last2=Martí-Rujas |first2=Javier |last3=Metrangolo |first3=Pierangelo |last4=Peinador |first4=Carlos |last5=Pilati |first5=Tullio |last6=Resnati |first6=Giuseppe |last7=Terraneo |first7=Giancarlo |last8=Ursini |first8=Maurizio |date=2011 |title=Dimensional caging of polyiodides: cation-templated synthesis using bipyridinium salts |url=http://xlink.rsc.org/?DOI=c0ce00860e |journal=CrystEngComm |language=en |volume=13 |issue=13 |pages=4411 |doi=10.1039/c0ce00860e |issn=1466-8033}} The table below lists the polyiodide salts which have been structurally characterized, along with their counter-cation.{{cite book

| title = Encyclopedia of Inorganic Chemistry | edition = 2nd

| chapter = Chlorine, Bromine, Iodine, & Astatine: Inorganic Chemistry

| first = R. Bruce | last = King

| publisher = Wiley

| year = 2005

| isbn = 9780470862100

| page = 747

}}

class="wikitable"

|+ Structure of higher polyiodides

! Anion !! Counter-cation !! Structural description

[I2]Na(C3H6O){{su|b=3|p=+}}linear{{cite web|url=https://www.ch.imperial.ac.uk/rzepa/blog/?p=439|last=Rzepa|first=Henry|author-link=Henry Rzepa|title=The mystery of the Finkelstein reaction|website=Chemistry with a twist|date=May 16, 2009}}{{Cite journal |last1=Howie |first1=R. Alan |last2=Wardell |first2=James L. |date=2003-05-15 |title=Polymeric tris(μ2-acetone-κ2O:O)sodium polyiodide at 120 K |url=https://scripts.iucr.org/cgi-bin/paper?S0108270103006395 |journal=Acta Crystallographica Section C Crystal Structure Communications |volume=59 |issue=5 |pages=m184–m186 |doi=10.1107/S0108270103006395 |pmid=12743392 |issn=0108-2701}}
[I3]Cs+, (C4H9)4N+linear
[I4]2−[Cu(NH3)4]2+symmetric linear array of iodine atoms{{cite journal|first1=Per H.|last1=Svensson|first2=Lars|last2=Kloo|title=Synthesis, Structure, and Bonding in Polyiodide and Metal Iodide–Iodine Systems|journal=Chem. Rev.|date=2003|volume=103|issue=5|pages=1649–84|doi=10.1021/cr0204101|pmid=12744691}}
rowspan=2 | [I5][EtMe3N]+V-shaped with polymeric layers
[EtMePh2N]+V-shaped with isolated [I5] ions
[I6]2−

|[NH3(CH2)8NH3]2+

|almost linear [{{Cite journal|last1=Reiss|first1=Guido J.|last2=Van Megen|first2=Martin|date=2013|title=I62− Anion Composed of Two Asymmetric Triiodide Moieties: A Competition between Halogen and Hydrogen Bond|journal=Inorganics|language=en|volume=1|issue=1|pages=3–13|doi=10.3390/inorganics1010003|doi-access=free}}]

[I7][Ag(18aneS6)]+an anionic network derived from a primitive rhombohedral lattice of iodide ions bridged by I2 molecules
[I8]2−[Ni(phen)3]2+regular anionic shapes, can be described as [{{chem|I|3|−}}·I2·{{chem|I|8|−}}] or [{{chem|I|3|−}}·{{chem|I|5|−}}]
rowspan=2 | [I9][Me2iPrPhN]+14-membered ring tied by two I2 bridges to give 10-membered rings
[Me4N]+non-octahedral, but a twisted "h"-like arrangement of {{chem|I|3|−}} and I2 units
[I10]2−[Cd(12-crown-4)2]2+; Theophylliniumtwisted ring configuration with two {{chem|I|3|−}} units linked by two I2 molecules{{Cite journal|last=Reiss|first=Guido J.|date=2019-06-26|title=A cyclic I102− anion in the layered crystal structure of theophyllinium pentaiodide, C7H9I5N4O2|journal=Zeitschrift für Kristallographie – New Crystal Structures|volume=234|issue=4|pages=737–739|doi=10.1515/ncrs-2019-0082|issn=2197-4578|doi-access=free}}
[I11]3−[(16aneS4)PdIPd(16aneS4)]3+14-membered ring (9.66 × 12.64 Å) around the complex cation, with the rings interlink further to give an infinite 2D sheet
rowspan=2 | [I12]2−[Ag2(15aneS5)2]2+extended 3D spiral superstructure supported by Ag–I bonds and weak I···S interactions
[Cu(Dafone)3]2+planar configuration
[I13]3−[Me2Ph2N]+consists of zigzag chains of I and I2
[I14]4−

|4,4′-bipyridinium

|double hook ({{chem|I|3

}}·I2·I·I2·I·I2·{{chem|I|3
}}){{Cite journal|last1=Reiss|first1=Guido J.|last2=Megen|first2=Martin van|date=2012|title=Two New Polyiodides in the 4,4′-Bipyridinium Diiodide/Iodine System|journal=Zeitschrift für Naturforschung B|volume=67|issue=1|pages=5–10|doi=10.1515/znb-2012-0102|s2cid=5857644|issn=1865-7117|doi-access=free}}
rowspan=2 | [I16]2−[Me2Ph2N]+centrosymmetric arrangement of [{{chem|I|7
}}·I2·{{chem|I|7
}}]
[iPrMe2PhN]+the anion forms 14-membered rings catenated by I2 molecules, which further link into layers with 10- and 14-membered rings
[I22]4−[MePh3P]+two L-shaped [I5] units linked by an I2 molecule and completed by two end-on [I5] groups
[I26]3−[Me3S]+consists of [I5] and [I7] ions with intercalated I2 molecules
[I26]4−Cp*2Fe+an anionic network derived from a primitive cubic lattice built from I ions, with I2 bridges on all edges and systematically removing {{frac|12}} of the I2 molecules
[I29]3−Cp2Fe+an anionic 3D network with a cage-like structure of [{({{chem|I|5|−}}){{1/2}}·I2}·{({{chem|I|12|2−}}){{1/2}}·I2}·I2], with [Cp2Fe]+ ions interacting with the anion in the cavities{{Cite journal|last1=Tebbe|first1=Karl-Friedrich|last2=Buchem|first2=Rita|date=1997-06-16|title=Das bisher iodreichste Polyiodid: Herstellung und Struktur von Fc3I29|journal=Angewandte Chemie|language=de|volume=109|issue=12|pages=1403–1405|doi=10.1002/ange.19971091233|bibcode=1997AngCh.109.1403T}}
[I]δ−Pyrroloperylene+•Infinite polyiodide homopolymer.{{cite journal |last1=Madhu |first1=Sheri |last2=Evans |first2=Hayden A. |last3=Doan-Nguyen |first3=Vicky V. T. |last4=Labram |first4=John G. |last5=Wu |first5=Guang |last6=Chabinyc |first6=Michael L. |last7=Seshadri |first7=Ram |last8=Wudl |first8=Fred |title=Infinite Polyiodide Chains in the Pyrroloperylene–Iodine Complex: Insights into the Starch-Iodine and Perylene-Iodine Complexes |journal=Angewandte Chemie International Edition |date=4 July 2016 |volume=55 |issue=28 |pages=8032–8035 |doi=10.1002/anie.201601585|pmid=27239781 |s2cid=30407996 |doi-access= }}

File:Structures of some polyiodide ions.png

Reactivity

Polyiodide compounds are generally sensitive to light.

Triiodide, {{chem|I|3|−}}, undergoes unimolecular photodissociation.{{Cite journal |last1=Hoops |first1=Alexandra A. |last2=Gascooke |first2=Jason R. |last3=Faulhaber |first3=Ann Elise |last4=Kautzman |first4=Kathryn E. |last5=Neumark |first5=Daniel M. |date=May 2004 |title=Two- and three-body photodissociation of gas phase I3− |url=http://aip.scitation.org/doi/10.1063/1.1691017 |journal=The Journal of Chemical Physics |language=en |volume=120 |issue=17 |pages=7901–7909 |doi=10.1063/1.1691017 |pmid=15267705 |hdl=2440/34955 |issn=0021-9606|hdl-access=free }}{{Cite journal |last1=Nakanishi |first1=Ryuzo |last2=Saitou |first2=Naoya |last3=Ohno |first3=Tomoyo |last4=Kowashi |first4=Satomi |last5=Yabushita |first5=Satoshi |last6=Nagata |first6=Takashi |date=2007-05-28 |title=Photodissociation of gas-phase I3−: Comprehensive understanding of nonadiabatic dissociation dynamics |url=http://aip.scitation.org/doi/10.1063/1.2736691 |journal=The Journal of Chemical Physics |language=en |volume=126 |issue=20 |pages=204311 |doi=10.1063/1.2736691 |pmid=17552766 |issn=0021-9606}} Polyiodide has been used to improve the scalability in the synthesis of halide perovskite photovoltaic materials.{{Cite journal |last1=Turkevych |first1=Ivan |last2=Kazaoui |first2=Said |last3=Belich |first3=Nikolai A. |last4=Grishko |first4=Aleksei Y. |last5=Fateev |first5=Sergey A. |last6=Petrov |first6=Andrey A. |last7=Urano |first7=Toshiyuki |last8=Aramaki |first8=Shinji |last9=Kosar |first9=Sonya |last10=Kondo |first10=Michio |last11=Goodilin |first11=Eugene A. |date=January 2019 |title=Strategic advantages of reactive polyiodide melts for scalable perovskite photovoltaics |url=https://www.nature.com/articles/s41565-018-0304-y |journal=Nature Nanotechnology |language=en |volume=14 |issue=1 |pages=57–63 |doi=10.1038/s41565-018-0304-y |pmid=30478274 |s2cid=53784226 |issn=1748-3395}}

Conductivity

Solid state compounds containing linear-chain polyiodide ions exhibit enhanced conductivity{{Cite journal |last1=Alvarez |first1=Santiago |last2=Novoa |first2=Juan |last3=Mota |first3=Fernando |date=1986-12-26 |title=The mechanism of electrical conductivity along polyhalide chains |url=https://linkinghub.elsevier.com/retrieve/pii/0009261486871184 |journal=Chemical Physics Letters |language=en |volume=132 |issue=6 |pages=531–534 |doi=10.1016/0009-2614(86)87118-4}}{{Cite journal |last1=Yu |first1=Hongtao |last2=Yan |first2=Lijia |last3=He |first3=Yaowu |last4=Meng |first4=Hong |last5=Huang |first5=Wei |date=2017 |title=An unusual photoconductive property of polyiodide and enhancement by catenating with 3-thiophenemethylamine salt |url=http://xlink.rsc.org/?DOI=C6CC08595D |journal=Chemical Communications |language=en |volume=53 |issue=2 |pages=432–435 |doi=10.1039/C6CC08595D |pmid=27965990 |issn=1359-7345}} than their simple iodide counterparts. The conductivity can be drastically modified by external pressure, which changes the interatomic distances between iodine moieties and the charge distribution.{{Cite journal |last1=Poręba |first1=Tomasz |last2=Ernst |first2=Michelle |last3=Zimmer |first3=Dominik |last4=Macchi |first4=Piero |last5=Casati |first5=Nicola |date=2019-05-13 |title=Pressure-Induced Polymerization and Electrical Conductivity of a Polyiodide |url=https://onlinelibrary.wiley.com/doi/10.1002/anie.201901178 |journal=Angewandte Chemie International Edition |language=en |volume=58 |issue=20 |pages=6625–6629 |doi=10.1002/anie.201901178 |pmid=30844119 |s2cid=73514885 |issn=1433-7851}}

See also

References

{{Reflist}}

{{Authority control}}

Category:Anions

Category:Iodides

Category:Polyhalides