Pople diagram
{{Short description|Diagram used in computational chemistry}}
File:Pople diagram reverse final.pdf (Nobel Prize winner and theoretical chemist). The diagram shows basis set and quantum chemical methods on vertical and horizontal axis respectively.]]
A Pople diagram or Pople's Diagram is a diagram which describes the relationship between various calculation methods in computational chemistry. It was initially introduced in January 1965 by Sir John Pople, {{post-nominals|country=GBR|KBE|FRS}}, during the Symposium of Atomic and Molecular Quantum Theory in Florida.{{cite journal |last= Karplus |first= Martin |date= July 1990 |title= Three-dimensional "Pople diagram" |journal= J. Phys. Chem. |volume= 14 |issue= 94 |pages= 5435–5436 |doi= 10.1021/j100377a002 }} The Pople Diagram can be either 2-dimensional or 3-dimensional, with the axes representing ab initio methods, basis sets and treatment of relativity.{{cite book |last= Dolg|first= Michael|date= 17 February 2015|title= Computational Methods in Lanthanide and Actinide Chemistry|url= https://books.google.com/books?id=cmu5BgAAQBAJ&q=pople+diagram&pg=PT200|publisher= John Wiley & Sons, 2015|page= 480|isbn= 9781118688281}} The diagram attempts to balance calculations by giving all aspects of a computation equal weight.
History
John Pople first introduced the Pople Diagram during the Symposium on Atomic and Molecular Quantum Theory held on Sanibel Island, Florida, in January 1965. He called it a "hyperbola of quantum chemistry", which illustrates the inverse relationship between the sophistication of a calculational method and the number of electrons in a molecule that can be studied by that method. Alternative (reverse) arrangement of the vertical axis or interchange of the two axes are also possible.{{cite journal|last1=Vereecken|first1=Luc|last2=Franciscob|first2= Joseph|journal=Chem. Soc. Rev.|volume=41|issue=19|pages=6259–6293|title=Theoretical studies of atmospheric reaction mechanisms in the troposphere|year=2012|doi=10.1039/C2CS35070J|pmid=22660412}}{{cite journal|last= Auer|first= Alexander A.|date= September 4, 2014|title= Electron Correlation - Methods beyond Hartree-Fock, how to approach chemical accuracy|url= http://www.cec.mpg.de/media/Presse/Medien/Auer_Electron_Correlation.pdf|journal= Max-Planck-Institute for Chemical Energy Conversion, Mülheim|access-date= October 21, 2015|archive-url= https://web.archive.org/web/20160304053546/http://www.cec.mpg.de/media/Presse/Medien/Auer_Electron_Correlation.pdf|archive-date= March 4, 2016|url-status= dead}}
Three-Dimensional Pople Diagrams
The 2-dimensional Pople diagram describes the convergence of the quantum-mechanical nonrelativistic electronic energy with the size of the basis set and the level of electron correlation included in the wavefunction.{{cite journal
|title = Two‐Dimensional Chart of Quantum Chemistry.
|author = J. A. Pople
|journal = Journal of Chemical Physics
|volume = 43
|issue = 10
|pages = S229–S230
|year = 1965
|doi= 10.1063/1.1701495|bibcode = 1965JChPh..43S.229P}} In order to reproduce accurate experimental thermochemical properties, secondary energetic contributions have to be considered. The third dimension of the Pople diagram consists of such energetic contributions. These contributions may include: spin–orbit interaction, scalar relativistic, zero-point vibrational energy, and deviations from the Born–Oppenheimer approximation. The three-dimensional Pople diagram (also known as the Csaszar cube.{{cite journal
|title = Anatomy of relativistic energy corrections in light molecular systems.
|author1=G. Tarczay |author2=A. G. Csaszar |author3=W. klopper |author4=H. M. quiney |journal = Molecular Physics
|volume=99 |issue=21 |pages=1769 |year = 2001
|doi= 10.1080/00268970110073907|bibcode=2001MolPh..99.1769T|s2cid=56163821 }}) describes the energy contributions involved in quantum chemistry composite methods.{{cite journal
|title = A computational chemist's guide to accurate thermochemistry for organic molecules.
|author = A. Karton
|journal = Wiley Interdisciplinary Reviews: Computational Molecular Science
|volume = 6
|issue = 3
|pages = 292–310
|year = 2016
|doi= 10.1002/wcms.1249|s2cid = 102248364
|url = https://api.research-repository.uwa.edu.au/ws/files/108321445/ak064_WIREs_2016.pdf
}}
See also
References
External links
- [http://rsc.anu.edu.au/~agilbert/gilbertspace/uploads/Chem3023.pdf Introduction to Computational Chemistry]
- [http://www2.bgsu.edu/departments/chem/faculty/massimo/Courses_4_files/Univeversite_de_Strasbourg_Lecture_2.pdf Introduction to Quantum and Computational Chemistry]
Category:Computational chemistry