Pseudo-Zernike polynomials

In mathematics, pseudo-Zernike polynomials are well known and widely used in the analysis of optical systems. They are also widely used in image analysis as shape descriptors.

Definition

They are an orthogonal set of complex-valued polynomials

defined as

:

V_{nm}(x,y) = R_{nm}(x,y)e^{jm\arctan(\frac{y}{x})},

where x^2+y^2\leq 1, n\geq 0, |m|\leq n and orthogonality on the unit disk is given as

:

\int_0^{2\pi}\int_0^1 r [V_{nl}(r\cos\theta,r\sin\theta)]^* \times

V_{mk}(r\cos\theta,r\sin\theta)\,dr\,d\theta =

\frac{\pi}{n+1}\delta_{mn}\delta_{kl},

where the star means complex conjugation, and

r^2 = x^2+y^2, x=r\cos\theta, y=r\sin\theta

are the standard transformations between polar and Cartesian coordinates.

The radial polynomials R_{nm} are defined as

R_{nm}(r) = \sum_{s=0}^{n-|m|}D_{n,|m|,s}\ r^{n-s}

with integer coefficients

:

D_{n,|m|,s} = (-1)^s\frac{(2n+1-s)!}{s!(n-|m|-s)!(n+|m|-s+1)!}.

Examples

Examples are:

R_{0,0} = 1

R_{1,0} = -2+3 r

R_{1,1} = r

R_{2,0} = 3+10 r^2-12 r

R_{2,1} = 5 r^2-4 r

R_{2,2} = r^2

R_{3,0} = -4+35 r^3-60 r^2+30 r

R_{3,1} = 21 r^3-30 r^2+10 r

R_{3,2} = 7 r^3-6 r^2

R_{3,3} = r^3

R_{4,0} = 5+126 r^4-280 r^3+210 r^2-60 r

R_{4,1} = 84 r^4-168 r^3+105 r^2-20 r

R_{4,2} = 36 r^4-56 r^3+21 r^2

R_{4,3} = 9 r^4-8 r^3

R_{4,4} = r^4

R_{5,0} = -6+462 r^5-1260 r^4+1260 r^3-560 r^2+105 r

R_{5,1} = 330 r^5-840 r^4+756 r^3-280 r^2+35 r

R_{5,2} = 165 r^5-360 r^4+252 r^3-56 r^2

R_{5,3} = 55 r^5-90 r^4+36 r^3

R_{5,4} = 11 r^5-10 r^4

R_{5,5} = r^5

Moments

The pseudo-Zernike Moments (PZM) of order n and repetition l are defined as

:

A_{nl}=\frac{n+1}{\pi}\int_0^{2\pi}\int_0^1 [V_{nl}(r\cos\theta,r\sin\theta)]^*

f(r\cos\theta,r\sin\theta)r\,dr\,d\theta,

where n = 0, \ldots \infty, and l takes on positive and negative integer

values subject to |l|\leq n.

The image function can be reconstructed by expansion of the pseudo-Zernike coefficients on the unit disk as

:

f(x,y) = \sum_{n=0}^{\infty}\sum_{l=-n}^{+n}A_{nl}V_{nl}(x,y).

Pseudo-Zernike moments are derived from conventional Zernike moments and shown

to be more robust and less sensitive to image noise than the Zernike moments.{{cite journal

|first1=C.-H.

|last1=Teh

|last2=Chin

|first2=R.

|title=On image analysis by the methods of moments

|journal=IEEE Transactions on Pattern Analysis and Machine Intelligence

|volume=10

|issue=4

|year=1988

|pages=496–513

|doi=10.1109/34.3913

}}

See also

References

{{Reflist}}

  • {{cite journal

|last1=Belkasim

|first1=S.

|last2=Ahmadi

|first2=M.

|last3=Shridhar

|first3=M.

|title=Efficient algorithm for the fast computation of zernike moments

|journal=Journal of the Franklin Institute

|year=1996

|volume=333

|issue=4

|pages=577–581

|doi=10.1016/0016-0032(96)00017-8

}}

  • {{cite journal

|last1=Haddadnia

|first1=J.

|last2=Ahmadi

|first2=M.

|last3=Faez

|first3=K.

|title=An efficient feature extraction method with pseudo-zernike moment in rbf neural network-based human face recognition system

|journal=EURASIP Journal on Applied Signal Processing

|year=2003

|pages=890–901

|doi=10.1155/S1110865703305128

|bibcode=2003EJASP2003..146H

|volume=2003

|issue=9

|doi-access=free

}}

  • {{cite conference

|author= T.-W. Lin

|author2=Y.-F. Chou

|title=A comparative study of zernike moments

|conference=Proceedings of the IEEE/WIC International Conference on Web Intelligence

|year=2003

|pages=516–519

|isbn=0-7695-1932-6

|doi=10.1109/WI.2003.1241255

}}

  • {{ cite journal

|first1=C.-W.

|last1=Chong

|first2=P.

|last2=Raveendran

|first3=R.

|last3=Mukundan

|title=The scale invariants of pseudo-Zernike moments

|journal=Pattern Anal. Applic.

|year=2003

|volume=6

|pages=176–184

|doi=10.1007/s10044-002-0183-5

|issue=3

|url=http://shdl.mmu.edu.my/2525/1/The%20scale%20invariants%20of%20pseudo-Zernike%20moments.pdf

}}

  • {{cite journal

|journal=Int. J. Pattern Recogn. Artif. Int.

|year=2003

|volume=17

|issue=6

|pages=1011–1023

|doi= 10.1142/S0218001403002769

|url=http://ir.canterbury.ac.nz/bitstream/10092/448/1/12584534_ivcnz01.pdf

|first1=Chee-Way

|last1=Chong

|first2=R.

|last2=Mukundan

|first3=P.

|last3=Raveendran

|title=An Efficient Algorithm for Fast Computation of Pseudo-Zernike Moments

|hdl=10092/448

|hdl-access=free

}}

  • {{cite web

|first1=Jamie

|last1=Shutler

|url=http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/SHUTLER3/node11.html |title=Complex Zernike Moments

|year=1992

}}

{{DEFAULTSORT:Pseudo-Zernike Polynomials}}

Category:Orthogonal polynomials