Pseudocompact space

{{Short description|Topological space with a bounded image under any continuous function to R}}

In mathematics, in the field of topology, a topological space is said to be pseudocompact if its image under any continuous function to R is bounded. Many authors include the requirement that the space be completely regular in the definition of pseudocompactness. Pseudocompact spaces were defined by Edwin Hewitt in 1948.Rings of real-valued continuous functions, I, Trans. Amer. Math. Soc. 64 [https://www.ams.org/journals/tran/1948-064-01/S0002-9947-1948-0026239-9/](1948), 45-99.

Pseudocompact topological groups

A relatively refined theory is available for pseudocompact topological groups.See, for example, Mikhail Tkachenko, Topological Groups: Between Compactness and \aleph_0-boundedness, in Mirek Husek and Jan van Mill (eds.), Recent Progress in General Topology II, 2002 Elsevier Science B.V. In particular, W. W. Comfort and Kenneth A. Ross proved that a product of pseudocompact topological groups is still pseudocompact (this might fail for arbitrary topological spaces).Comfort, W. W. and Ross, K. A., Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16, 483-496, 1966. [http://msp.org/pjm/1966/16-3/pjm-v16-n3-p08-p.pdf ]

Notes

{{reflist}}

See also

References

  • {{Citation | last1 = Engelking | first1 = Ryszard | author-link=Ryszard Engelking | title=Outline of General Topology | publisher= North-Holland|location= Amsterdam | year=1968 | others=translated from Polish}}.
  • {{Citation | last1 = Engelking | first1 = Ryszard |title=General Topology | publisher= Heldermann Verlag|location= Berlin| year=1989}}.
  • {{citation|last1=Kerstan|first1=Johannes|title=Zur Charakterisierung der pseudokompakten Räume|journal=Mathematische Nachrichten|volume=16|pages=289–293|year=1957|doi=10.1002/mana.19570160505|issue=5–6}}.
  • {{Citation | last1 = Stephenson | first1 = R.M. Jr | title= Pseudocompact Spaces | publisher= Elsevier B. V.|location= Amsterdam | year=2003 | others= Chapter d-7 in Encyclopedia of General Topology, Edited by: Klaas Pieter Hart, Jun-iti Nagata and Jerry E. Vaughan, Pages 177-181}}.
  • {{citation|last=Watson|first=W. Stephen|title=Pseudocompact metacompact spaces are compact|journal=Proc. Amer. Math. Soc.|volume=81|pages=151–152|year=1981|doi=10.1090/s0002-9939-1981-0589159-1|doi-access=free}}.
  • {{Citation | last1=Willard| first1=Stephen| title=General Topology | year=1970 | publisher=Addison-Wesley | location=Reading, Mass. }}.
  • {{citation|first=Wang|last=Yan-Min|title=New characterisations of pseudocompact spaces|journal=Bull. Austral. Math. Soc.|volume=38|pages=293–298|year=1988|doi=10.1017/S0004972700027568|issue=2|doi-access=free}}.