Q-category

{{Short description|Concept in mathematical category theory}}

In mathematics, a Q-category or almost quotient category is a category that is a "milder version of a Grothendieck site."{{harvnb|Kontsevich|Rosenberg|2004a|loc=§ 1.}} A Q-category is a coreflective subcategory.{{Cite web |last1=Škoda |first1=Zoran |last2=Schreiber |first2=Urs |last3=Mrđen |first3=Rafael |last4=Fritz |first4=Tobias |date=14 September 2017 |title=Q-category |url=https://ncatlab.org/nlab/show/Q-category |access-date=25 March 2023 |website=nLab}}{{Clarification needed|reason=subcategory of what?|date=March 2023}} The Q stands for a quotient.

The concept of Q-categories was introduced by Alexander Rosenberg in 1988. The motivation for the notion was its use in noncommutative algebraic geometry; in this formalism, noncommutative spaces are defined as sheaves on Q-categories.

Definition

A Q-category is defined by the formula{{Further explanation needed|reason=notation is unclear|date=March 2023}} \mathbb{A} : (u^* \dashv u_*) : \bar A \stackrel{\overset{u^*}{\leftarrow}}{\underset{u_*}{\to}} Awhere u^* is the left adjoint in a pair of adjoint functors and is a full and faithful functor.

Examples

  • The category of presheaves over any Q-category is itself a Q-category.
  • For any category, one can define the Q-category of cones.{{Further explanation needed|reason=what is a "cone"?|date=March 2023}}
  • There is a Q-category of sieves.{{Clarification needed|reason=what is a sieve?|date=March 2023}}

References

{{reflist}}

  • {{Cite web |last1=Kontsevich |first1=Maxim |last2=Rosenberg |first2=Alexander |date=2004a |title=Noncommutative spaces |url=https://ncatlab.org/nlab/files/KontsevichRosenbergNCSpaces.pdf |access-date=25 March 2023 |website=ncatlab.org}}
  • Alexander Rosenberg, Q-categories, sheaves and localization, (in Russian) Seminar on supermanifolds 25, Leites ed. Stockholms Universitet 1988.

Further reading

  • {{Cite web |last1=Kontsevich |first1=Maxim |last2=Rosenberg |first2=Alexander |date=2004b |title=Noncommutative stacks |url=http://www.mpim-bonn.mpg.de/preblob/2333 |access-date=25 March 2023 |website=ncatlab.org}}
  • {{Cite conference |title=Notes on formal smoothness |language=en |last=Brzezinski|first=Tomasz|date=29 October 2007|doi=10.1007/978-3-7643-8742-6 |arxiv=0710.5527 |conference=Modules and Comodules|conference-url=https://link.springer.com/book/10.1007/978-3-7643-8742-6|editor-last=Brzeziński|editor-first=Tomasz|editor2-last=Pardo|editor2-first=José Luis Gómez|editor3-last=Shestakov|editor3-first=Ivan|editor4-last=Smith|editor4-first=Patrick F.}}
  • {{Cite journal |last=Lawvere |first=F. William |date=2007 |title=Axiomatic Cohesion |url=http://www.tac.mta.ca/tac/volumes/19/3/19-03.pdf |journal=Theory and Applications of Categories |volume=19 |issue=3 |pages=41–49}}

Category:Category theory

Category:Noncommutative geometry

{{categorytheory-stub}}