Quadratic integral

In mathematics, a quadratic integral is an integral of the form

\int \frac{dx}{a+bx+cx^2}.

It can be evaluated by completing the square in the denominator.

\int \frac{dx}{a+bx+cx^2} = \frac{1}{c} \int \frac{dx}{\left( x + \frac{b}{2c} \right)^{\!2} + \left( \frac{a}{c} - \frac{b^2}{4c^2} \right)}.

Positive-discriminant case

Assume that the discriminant q = b2 − 4ac is positive. In that case, define u and A by

u = x + \frac{b}{2c},

and

-A^2 = \frac{a}{c} - \frac{b^2}{4c^2} = \frac{1}{4c^2}(4ac - b^2).

The quadratic integral can now be written as

\int \frac{dx}{a+bx+cx^2} = \frac{1}{c} \int \frac{du}{u^2-A^2} = \frac{1}{c} \int \frac{du}{(u+A)(u-A)}.

The partial fraction decomposition

\frac{1}{(u+A)(u-A)} = \frac{1}{2A}\!\left( \frac{1}{u-A} - \frac{1}{u+A} \right)

allows us to evaluate the integral:

\frac{1}{c} \int \frac{du}{(u+A)(u-A)} = \frac{1}{2Ac} \ln \left( \frac{u - A}{u + A} \right) + \text{constant}.

The final result for the original integral, under the assumption that q > 0, is

\int \frac{dx}{a+bx+cx^2} = \frac{1}{ \sqrt{q}} \ln \left( \frac{2cx + b - \sqrt{q}}{2cx+b+ \sqrt{q}} \right) + \text{constant}.

Negative-discriminant case

In case the discriminant q = b2 − 4ac is negative, the second term in the denominator in

\int \frac{dx}{a+bx+cx^2} = \frac{1}{c} \int \frac{dx}{\left( x+ \frac{b}{2c} \right)^{\!2} + \left( \frac{a}{c} - \frac{b^2}{4c^2} \right)}.

is positive. Then the integral becomes

\begin{align}

\frac{1}{c} \int \frac{du} {u^2 + A^2}

& = \frac{1}{cA} \int \frac{du/A}{(u/A)^2 + 1 } \\[9pt]

& = \frac{1}{cA} \int \frac{dw}{w^2 + 1} \\[9pt]

& = \frac{1}{cA} \arctan(w) + \mathrm{constant} \\[9pt]

& = \frac{1}{cA} \arctan\left(\frac{u}{A}\right) + \text{constant} \\[9pt]

& = \frac{1}{c\sqrt{\frac{a}{c} - \frac{b^2}{4c^2}}} \arctan \left(\frac{x + \frac{b}{2c}}{\sqrt{\frac{a}{c} - \frac{b^2}{4c^2}}}\right) + \text{constant} \\[9pt]

& = \frac{2}{\sqrt{4ac - b^2\, }} \arctan\left(\frac{2cx + b}{\sqrt{4ac - b^2}}\right) + \text{constant}.

\end{align}

References

  • Weisstein, Eric W. "[http://mathworld.wolfram.com/QuadraticIntegral.html Quadratic Integral]." From MathWorld--A Wolfram Web Resource, wherein the following is referenced:
  • {{cite book |author-first1=Izrail Solomonovich |author-last1=Gradshteyn |author-link1=Izrail Solomonovich Gradshteyn |author-first2=Iosif Moiseevich |author-last2=Ryzhik |author-link2=Iosif Moiseevich Ryzhik |author-first3=Yuri Veniaminovich |author-last3=Geronimus |author-link3=Yuri Veniaminovich Geronimus |author-first4=Michail Yulyevich |author-last4=Tseytlin |author-link4=Michail Yulyevich Tseytlin |author-first5=Alan |author-last5=Jeffrey |editor-first1=Daniel |editor-last1=Zwillinger |editor-first2=Victor Hugo |editor-last2=Moll |editor-link2=Victor Hugo Moll |translator=Scripta Technica, Inc. |title=Table of Integrals, Series, and Products |publisher=Academic Press, Inc. |date=2015 |orig-year=October 2014 |edition=8 |language=English |isbn=978-0-12-384933-5 |lccn=2014010276 |title-link=Gradshteyn and Ryzhik}}

{{Calculus topics}}

Category:Integral calculus