Quantum invariant

{{Short description|Concept in mathematical knot theory}}

In the mathematical field of knot theory, a quantum knot invariant or quantum invariant of a knot or link is a linear sum of colored Jones polynomial of surgery presentations of the knot complement.

{{Cite journal |first=Maxim |last=Kontsevich |title=Vassiliev's knot invariants |journal=Adv. Soviet Math. |volume=16 |year=1993 |page=137}}

{{Cite journal|last=Watanabe|first=Tadayuki|title=Knotted trivalent graphs and construction of the LMO invariant from triangulations|journal=Osaka J. Math.|year=2007|volume=44|issue=2|page=351|url=http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.ojm/1183667985|access-date=4 December 2012}}

List of invariants

| last1 = Reshetikhin | first1 = N.

| last2 = Turaev | first2 = V. G.

| doi = 10.1007/BF01239527

| issue = 3

| journal = Inventiones Mathematicae

| mr = 1091619

| pages = 547–597

| title = Invariants of 3-manifolds via link polynomials and quantum groups

| volume = 103

| year = 1991}}

See also

References

{{Reflist}}

Further reading

  • {{Cite book

|publisher = Princeton University Press

|isbn = 978-0691085777

|location = Princeton, N.J

|title = Topology of 4-manifolds

|author = Freedman, Michael H.

|date = 1990

|ol = 2220094M

|url-access = registration

|url = https://archive.org/details/topologyof4manif0000free

}}

  • {{Cite book

|publisher = World Scientific Publishing Company

|isbn = 9789810246754

|title = Quantum Invariants

|author = Ohtsuki, Tomotada

|date = December 2001

|ol = 9195378M

}}