Quantum metrology

{{Short description|Application of quantum entanglement to high-precision measurement}}

{{Use American English|date = April 2019}}

{{Use mdy dates|date = April 2019}}

Quantum metrology is the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory to describe the physical systems,{{cite journal | last1=Braunstein | first1=Samuel L. | last2=Caves | first2=Carlton M. | title=Statistical distance and the geometry of quantum states | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=72 | issue=22 | date=1994-05-30 | issn=0031-9007 | doi=10.1103/physrevlett.72.3439 | pmid=10056200 | pages=3439–3443 | bibcode=1994PhRvL..72.3439B}}{{cite journal |last1=Paris |first1=Matteo G. A. |title=Quantum Estimation for Quantum Technology|journal=International Journal of Quantum Information |date=21 November 2011 |volume=07 |issue=supp01 |pages=125–137 |doi=10.1142/S0219749909004839|arxiv=0804.2981 |s2cid=2365312 }}{{cite journal |last1=Giovannetti |first1=Vittorio |last2=Lloyd |first2=Seth |last3=Maccone |first3=Lorenzo |title=Advances in quantum metrology |journal=Nature Photonics |date=31 March 2011 |volume=5 |issue=4 |pages=222–229 |doi=10.1038/nphoton.2011.35|arxiv=1102.2318 |bibcode=2011NaPho...5..222G |s2cid=12591819 }}{{cite journal |last1=Tóth |first1=Géza |last2=Apellaniz |first2=Iagoba |title=Quantum metrology from a quantum information science perspective |journal=Journal of Physics A: Mathematical and Theoretical |date=24 October 2014 |volume=47 |issue=42 |pages=424006 |doi=10.1088/1751-8113/47/42/424006|arxiv=1405.4878 |bibcode=2014JPhA...47P4006T |doi-access=free }}{{cite journal |last1=Pezzè |first1=Luca |last2=Smerzi |first2=Augusto |last3=Oberthaler |first3=Markus K. |last4=Schmied |first4=Roman |last5=Treutlein |first5=Philipp |title=Quantum metrology with nonclassical states of atomic ensembles |journal=Reviews of Modern Physics |date=5 September 2018 |volume=90 |issue=3 |page=035005 |doi=10.1103/RevModPhys.90.035005|arxiv=1609.01609 |bibcode=2018RvMP...90c5005P |s2cid=119250709 }}{{cite journal |last1=Braun |first1=Daniel |last2=Adesso | first2=Gerardo | last3=Benatti| first3= Fabio | last4=Floreanini| first4=Roberto | last5=Marzolino |first5=Ugo |last6=Mitchell|first6= Morgan W. |last7=Pirandola |first7= Stefano|title= Quantum-enhanced measurements without entanglement |journal=Reviews of Modern Physics |date=5 September 2018 |volume=90 |issue=3 |page=035006 |doi=10.1103/RevModPhys.90.035006 |arxiv= 1701.05152|bibcode=2018RvMP...90c5006B |s2cid=119081121 }} particularly exploiting quantum entanglement and quantum squeezing. This field promises to develop measurement techniques that give better precision than the same measurement performed in a classical framework. Together with quantum hypothesis testing,{{cite book |last1=Helstrom |first1=C |title=Quantum detection and estimation theory |date=1976 |publisher=Academic Press |isbn=0123400503}}{{cite book |last1=Holevo |first1=Alexander S |title=Probabilistic and statistical aspects of quantum theory |date=1982 |publisher=Scuola Normale Superiore |isbn=978-88-7642-378-9 |edition=[2nd English.]}} it represents an important theoretical model at the basis of quantum sensing.{{Cite journal | doi=10.1038/s41566-018-0301-6| title=Advances in photonic quantum sensing| journal=Nature Photonics| volume=12| pages=724–733| year=2018| last1=Pirandola| first1=S| last2=Bardhan| first2=B. R.| last3=Gehring| first3=T.| last4=Weedbrook | first4= C.| last5= Lloyd| first5=S. | issue=12| arxiv= 1811.01969| bibcode=2018NaPho..12..724P| s2cid=53626745}}{{cite journal |last1=Kapale |first1=Kishor T. |last2=Didomenico |first2=Leo D. |last3=Kok |first3=Pieter |last4=Dowling |first4=Jonathan P. |title=Quantum Interferometric Sensors |journal=The Old and New Concepts of Physics |date=18 July 2005 |volume=2 |issue=3–4 |pages=225–240 |url=https://www.hrpub.org/download/20040201/UJPA-18490180.pdf}}

Mathematical foundations

A basic task of quantum metrology is estimating the parameter \theta

of the unitary dynamics

: \varrho(\theta)=\exp(-iH\theta)\varrho_0\exp(+iH\theta),

where \varrho_0 is the initial state of the system and H is the Hamiltonian of the system. \theta is estimated based on measurements on \varrho(\theta).

Typically, the system is composed of many particles, and the Hamiltonian is a sum of single-particle terms

: H=\sum_k H_k,

where H_k acts on the kth particle. In this case, there is no interaction between the particles, and we talk about linear interferometers.

The achievable precision is bounded from below by the quantum Cramér-Rao bound as

: (\Delta \theta)^2 \ge \frac 1 {m F_{\rm Q}[\varrho,H]},

where m is the number of independent repetitions and F_{\rm Q}[\varrho,H] is the quantum Fisher information.{{cite journal |last1=Braunstein |first1=Samuel L. |last2=Caves |first2=Carlton M. |last3=Milburn |first3=G.J. |title=Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance |journal=Annals of Physics |date=April 1996 |volume=247 |issue=1 |pages=135–173 |doi=10.1006/aphy.1996.0040|arxiv=quant-ph/9507004 |bibcode=1996AnPhy.247..135B |s2cid=358923 }}

Examples

One example of note is the use of the NOON state in a Mach–Zehnder interferometer to perform accurate phase measurements.{{cite journal | last1=Kok | first1=Pieter | last2=Braunstein | first2=Samuel L | last3=Dowling | first3=Jonathan P | title=Quantum lithography, entanglement and Heisenberg-limited parameter estimation | journal=Journal of Optics B: Quantum and Semiclassical Optics | publisher=IOP Publishing | volume=6 | issue=8 | date=2004-07-28 | issn=1464-4266 | doi=10.1088/1464-4266/6/8/029 | pages=S811–S815| arxiv=quant-ph/0402083 | bibcode=2004JOptB...6S.811K | s2cid=15255876 | url=http://www-users.cs.york.ac.uk/~schmuel/papers/kbd04.pdf }} A similar effect can be produced using less exotic states such as squeezed states. In quantum illumination protocols, two-mode squeezed states are widely studied to overcome the limit of classical states represented in coherent states. In atomic ensembles, spin squeezed states can be used for phase measurements.

Applications

{{update|section|date=October 2022|reason=Advanced LIGO has already deployed measurements with quantum squeezing.}}

An important application of particular note is the detection of gravitational radiation in projects such as LIGO or the Virgo interferometer, where high-precision measurements must be made for the relative distance between two widely separated masses. However, the measurements described by quantum metrology are currently not used in this setting, being difficult to implement. Furthermore, there are other sources of noise affecting the detection of gravitational waves which must be overcome first. Nevertheless, plans may call for the use of quantum metrology in LIGO.{{cite journal | last1=Kimble | first1=H. J. | last2=Levin | first2=Yuri | last3=Matsko | first3=Andrey B. | last4=Thorne | first4=Kip S. | last5=Vyatchanin | first5=Sergey P. | title=Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics | journal=Physical Review D | publisher=American Physical Society (APS) | volume=65 | issue=2 | date=2001-12-26 | issn=0556-2821 | doi=10.1103/physrevd.65.022002 | page=022002| arxiv=gr-qc/0008026 | url=https://authors.library.caltech.edu/4703/1/KIMprd02.pdf | bibcode=2001PhRvD..65b2002K | hdl=1969.1/181491 | s2cid=15339393 }}

Scaling and the effect of noise

A central question of quantum metrology is how the precision, i.e., the variance of the parameter estimation, scales with the number of particles. Classical interferometers cannot overcome the shot-noise limit. This limit is also frequently called standard quantum limit (SQL)

: (\Delta \theta)^2\ge \tfrac{1}{mN},

where is N the number of particles. Shot-noise limit is known to be asymptotically achievable using coherent states and homodyne detection.{{Cite journal|last1=Guha|first1=Saikatł|last2=Erkmen|first2=Baris|date=2009-11-10|title=Gaussian-state quantum-illumination receivers for target detection|journal=Physical Review A|volume=80|issue=5 |pages=052310|doi=10.1103/PhysRevA.80.052310|arxiv=0911.0950 |bibcode=2009PhRvA..80e2310G |s2cid=109058131 }}

Quantum metrology can reach the Heisenberg limit given by

: (\Delta \theta)^2\ge \tfrac{1}{mN^2}.

However, if uncorrelated local noise is present, then for large particle numbers the scaling of the precision returns to shot-noise scaling (\Delta \theta)^2\propto \tfrac{1}{N}.{{Cite journal|last1=Demkowicz-Dobrzański|first1=Rafał|last2=Kołodyński|first2=Jan|last3=Guţă|first3=Mădălin|date=2012-09-18|title=The elusive Heisenberg limit in quantum-enhanced metrology|journal=Nature Communications|volume=3|pages=1063|doi=10.1038/ncomms2067|pmid=22990859|pmc=3658100|arxiv=1201.3940|bibcode=2012NatCo...3.1063D}}{{Cite journal|last1=Escher|first1=B. M.|last2=Filho|first2=R. L. de Matos|last3=Davidovich|first3=L.|date=May 2011|title=General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology|journal=Nature Physics|volume=7|issue=5|pages=406–411|doi=10.1038/nphys1958|issn=1745-2481|arxiv=1201.1693|bibcode=2011NatPh...7..406E|s2cid=12391055}}

Relation to quantum information science

There are strong links between quantum metrology and quantum information science. It has been shown that quantum entanglement is needed to outperform classical interferometry in magnetometry with a fully polarized ensemble of spins.{{Cite journal|last=Sørensen|first=Anders S.|date=2001|title=Entanglement and Extreme Spin Squeezing|journal=Physical Review Letters|volume=86|issue=20|pages=4431–4434|doi=10.1103/physrevlett.86.4431|arxiv=quant-ph/0011035|bibcode=2001PhRvL..86.4431S|pmid=11384252|s2cid=206327094}} It has been proved that a similar relation is generally valid for any linear interferometer, independent of the details of the scheme.{{Cite journal|last1=Pezzé|first1=Luca|last2=Smerzi|first2=Augusto|date=2009|title=Entanglement, Nonlinear Dynamics, and the Heisenberg Limit|journal=Physical Review Letters|volume=102|issue=10|doi=10.1103/physrevlett.102.100401|arxiv=0711.4840|bibcode=2009PhRvL.102j0401P|pmid=19392092|page=100401|s2cid=13095638}} Moreover, higher and higher levels of multipartite entanglement is needed to achieve a better and better accuracy in parameter estimation.{{Cite journal|last1=Hyllus|first1=Philipp|date=2012|title=Fisher information and multiparticle entanglement|journal=Physical Review A|volume=85|issue=2|pages=022321|doi=10.1103/physreva.85.022321|arxiv=1006.4366|bibcode=2012PhRvA..85b2321H|s2cid=118652590}}{{Cite journal|last=Tóth|first=Géza|date=2012|title=Multipartite entanglement and high-precision metrology|journal=Physical Review A|volume=85|issue=2|pages=022322|doi=10.1103/physreva.85.022322|arxiv=1006.4368|bibcode=2012PhRvA..85b2322T|s2cid=119110009}} Additionally, entanglement in multiple degrees of freedom of quantum systems (known as "hyperentanglement"), can be used to enhance precision, with enhancement arising from entanglement in each degree of freedom.{{Cite journal|last1=Walborn|first1=S. P.|last2=Pimentel|first2=A. H.|last3=Filho|first3=R. L. de Matos|last4=Davidovich|first4=L.|date=January 2018|title=Quantum-enhanced sensing from hyperentanglement|journal=Physical Review A|volume=97|issue=1|pages=010301(R)|doi= 10.1103/PhysRevA.97.010301|arxiv=1709.04513|bibcode=2018PhRvA..97a0301W|s2cid=73689445 }}

See also

{{Main|Outline of metrology and measurement}}

{{div col|colwidth=20em}}

{{div col end}}

References

{{reflist}}

{{Quantum mechanics topics}}

{{emerging technologies|quantum=yes|other=yes}}

Category:Quantum information science

Category:Quantum optics

Category:Metrology