Quantum q-Krawtchouk polynomials
{{DISPLAYTITLE: Quantum q-Krawtchouk polynomials}}
In mathematics, the quantum q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions by
:
q^{-n},q^{-x}\\
q^{-N}\end{matrix}
;q;pq^{n+1}\right]\qquad n=0,1,2,...,N.
References
- {{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=Cambridge University Press | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
- {{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | arxiv=math/9602214 | year=2010}}
- {{Citation | last1=Koekoek | first1=Roelof | last2=Swarttouw | first2=René F. | title=The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue | arxiv=math/9602214 | year=1996| bibcode=1996math......2214K }}
- {{dlmf|id=18|title=Chapter 18 Orthogonal Polynomials|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}