Quantum q-Krawtchouk polynomials

{{DISPLAYTITLE: Quantum q-Krawtchouk polynomials}}

In mathematics, the quantum q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties.

Definition

The polynomials are given in terms of basic hypergeometric functions by

:K_n^{qtm}(q^{-x};p,N;q)={}_2\phi_1\left[\begin{matrix}

q^{-n},q^{-x}\\

q^{-N}\end{matrix}

;q;pq^{n+1}\right]\qquad n=0,1,2,...,N.

References

  • {{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=Cambridge University Press | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
  • {{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | arxiv=math/9602214 | year=2010}}
  • {{Citation | last1=Koekoek | first1=Roelof | last2=Swarttouw | first2=René F. | title=The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue | arxiv=math/9602214 | year=1996| bibcode=1996math......2214K }}
  • {{dlmf|id=18|title=Chapter 18 Orthogonal Polynomials|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}

Category:Orthogonal polynomials

Category:Q-analogs

Category:Special hypergeometric functions