Quasi-Frobenius Lie algebra

In mathematics, a quasi-Frobenius Lie algebra

:(\mathfrak{g},[\,\,\,,\,\,\,],\beta )

over a field k is a Lie algebra

:(\mathfrak{g},[\,\,\,,\,\,\,] )

equipped with a nondegenerate skew-symmetric bilinear form

:\beta : \mathfrak{g}\times\mathfrak{g}\to k, which is a Lie algebra 2-cocycle of \mathfrak{g} with values in k. In other words,

:: \beta \left(\left[X,Y\right],Z\right)+\beta \left(\left[Z,X\right],Y\right)+\beta \left(\left[Y,Z\right],X\right)=0

for all X, Y, Z in \mathfrak{g}.

If \beta is a coboundary, which means that there exists a linear form f : \mathfrak{g}\to k such that

:\beta(X,Y)=f(\left[X,Y\right]),

then

:(\mathfrak{g},[\,\,\,,\,\,\,],\beta )

is called a Frobenius Lie algebra.

Equivalence with pre-Lie algebras with nondegenerate invariant skew-symmetric bilinear form

If (\mathfrak{g},[\,\,\,,\,\,\,],\beta ) is a quasi-Frobenius Lie algebra, one can define on \mathfrak{g} another bilinear product \triangleleft by the formula

:: \beta \left(\left[X,Y\right],Z\right)=\beta \left(Z \triangleleft Y,X \right) .

Then one has

\left[X,Y\right]=X \triangleleft Y-Y \triangleleft X and

:(\mathfrak{g}, \triangleleft)

is a pre-Lie algebra.

See also

References

  • Jacobson, Nathan, Lie algebras, Republication of the 1962 original. Dover Publications, Inc., New York, 1979. {{isbn|0-486-63832-4}}
  • Vyjayanthi Chari and Andrew Pressley, A Guide to Quantum Groups, (1994), Cambridge University Press, Cambridge {{isbn|0-521-55884-0}}.

Category:Lie algebras

Category:Coalgebras

Category:Symplectic topology