Quasiconvexity (calculus of variations)
{{Short description|Generalisation of convexity}}
{{about|the generalisation of convexity used in the calculus of variations|the unrelated generalisation of convexity used in microeconomics|Quasiconvex function}}
In the calculus of variations, a subfield of mathematics, quasiconvexity is a generalisation of the notion of convexity. It is used to characterise the integrand of a functional and related to the existence of minimisers. Under some natural conditions, quasiconvexity of the integrand is a necessary and sufficient condition for a functional
to be lower semi-continuous in the weak topology, for a sufficient regular domain . By compactness arguments (Banach–Alaoglu theorem) the existence of minimisers of weakly lower semicontinuous functionals may then follow from the direct method.{{cite book
|last=Rindler
|first=Filip
|title=Calculus of Variations
|publisher=Springer International Publishing AG
|series=Universitext
|year=2018
|doi=10.1007/978-3-319-77637-8
|isbn=978-3-319-77636-1
|page=125
}}
This concept was introduced by Morrey in 1952.{{cite journal
|last1=Morrey
|first1=Charles B.
|author-link=Charles B. Morrey Jr.
|year=1952
|title=Quasiconvexity and the Lower Semicontinuity of Multiple Integrals
|journal=Pacific Journal of Mathematics
|volume=2
|issue=1
|pages=25–53
|publisher=Mathematical Sciences Publishers
|doi=10.2140/pjm.1952.2.25
|url=https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-2/issue-1/Quasi-convexity-and-the-lower-semicontinuity-of-multiple-integrals/pjm/1103051941.full
|access-date=2022-06-30
|doi-access=free
}} This generalisation should not be confused with the same concept of a quasiconvex function which has the same name.
Definition
A locally bounded Borel-measurable function is called quasiconvex if
\int_{B(0,1)} \bigl(f(A + \nabla \psi(x)) - f(A)\bigr)dx \geq 0
for all and all , where {{math|B(0,1)}} is the unit ball and is the Sobolev space of essentially bounded functions with essentially bounded derivative and vanishing trace.{{cite book
|last=Rindler
|first=Filip
|title=Calculus of Variations
|publisher=Springer International Publishing AG
|series=Universitext
|year=2018
|doi=10.1007/978-3-319-77637-8
|isbn=978-3-319-77636-1
|page=106
}}
Properties of quasiconvex functions
- The domain {{math|B(0,1)}} can be replaced by any other bounded Lipschitz domain.{{cite book
|last=Rindler
|first=Filip
|title=Calculus of Variations
|publisher=Springer International Publishing AG
|series=Universitext
|year=2018
|doi=10.1007/978-3-319-77637-8
|isbn=978-3-319-77636-1
|page=108
}}
- Quasiconvex functions are locally Lipschitz-continuous.{{cite book
|last=Dacorogna
|first=Bernard
|author-link=Bernard Dacorogna
|title=Direct Methods in the Calculus of Variations
|publisher=Springer Science+Business Media, LLC
|series= Applied mathematical sciences
|year=2008
|volume=78
|doi=10.1007/978-0-387-55249-1
|isbn=978-0-387-35779-9
|edition= 2nd
|page=159
}}
- In the definition the space can be replaced by periodic Sobolev functions.{{cite book
|last=Dacorogna
|first=Bernard
|author-link=Bernard Dacorogna
|title=Direct Methods in the Calculus of Variations
|publisher=Springer Science+Business Media, LLC
|series= Applied mathematical sciences
|year=2008
|volume=78
|doi=10.1007/978-0-387-55249-1
|isbn=978-0-387-35779-9
|edition= 2nd
|page=173
}}
Relations to other notions of convexity
Quasiconvexity is a generalisation of convexity for functions defined on matrices, to see this let and with
. The Riesz-Markov-Kakutani representation theorem states that the dual space of can be identified with the space of signed, finite Radon measures on it. We define a Radon measure by
\langle h, \mu\rangle = \frac{1}
B(0,1) |
for . It can be verified that is a
probability measure and its barycenter is given
[\mu] = \langle \operatorname{id}, \mu \rangle = A + \int_{B(0,1)} V(x) dx = A.
If {{math|h}} is a convex function, then Jensens' Inequality gives
h(A) = h([\mu]) \leq \langle h, \mu \rangle = \frac{1}
B(0,1) |
This holds in particular if {{math|V(x)}} is the derivative of by the generalised Stokes' Theorem.{{cite book
|last=Rindler
|first=Filip
|title=Calculus of Variations
|publisher=Springer International Publishing AG
|series=Universitext
|year=2018
|doi=10.1007/978-3-319-77637-8
|isbn=978-3-319-77636-1
|page=107
}}
The determinant is an example of a quasiconvex function, which is not convex.{{cite book
|last=Rindler
|first=Filip
|title=Calculus of Variations
|publisher=Springer International Publishing AG
|series=Universitext
|year=2018
|doi=10.1007/978-3-319-77637-8
|isbn=978-3-319-77636-1
|page=105
}} To see that the determinant is not convex, consider
A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ \end{pmatrix}
\quad \text{and} \quad
B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ \end{pmatrix}.
It then holds but for we have
. This shows that the determinant is not a quasiconvex function like in Game Theory and thus a distinct notion of convexity.
In the vectorial case of the Calculus of Variations there are other notions of convexity. For a function it holds that {{cite book
|last=Dacorogna
|first=Bernard
|author-link=Bernard Dacorogna
|title=Direct Methods in the Calculus of Variations
|publisher=Springer Science+Business Media, LLC
|series= Applied mathematical sciences
|year=2008
|volume=78
|doi=10.1007/978-0-387-55249-1
|isbn=978-0-387-35779-9
|edition= 2nd
|page=159
}}
f \text{ convex} \Rightarrow f \text{ polyconvex} \Rightarrow f \text{ quasiconvex} \Rightarrow
f \text{ rank-1-convex}.
These notions are all equivalent if or . Already in 1952, Morrey conjectured that rank-1-convexity does not imply quasiconvexity.{{cite journal
|last1=Morrey
|first1=Charles B.
|author-link=Charles B. Morrey Jr.
|year=1952
|title=Quasiconvexity and the Lower Semicontinuity of Multiple Integrals
|journal=Pacific Journal of Mathematics
|volume=2
|issue=1
|pages=25–53
|publisher=Mathematical Sciences Publishers
|doi=10.2140/pjm.1952.2.25
|url=https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-2/issue-1/Quasi-convexity-and-the-lower-semicontinuity-of-multiple-integrals/pjm/1103051941.full
|access-date=2022-06-30
|doi-access=free
}} This was a major unsolved problem in the Calculus of Variations, until Šverák gave an counterexample in 1993 for the case and .{{cite journal
|last1=Šverák
|first1=Vladimir
|author-link=Vladimír Šverák
|year=1993
|title=Rank-one convexity does not imply quasiconvexity
|journal=Proceedings of the Royal Society of Edinburgh Section A: Mathematics
|volume=120
|issue=1–2
|pages=185–189
|publisher= Cambridge University Press, Cambridge; RSE Scotland Foundation
|doi=10.1017/S0308210500015080
|s2cid=120192116
|url=https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/abs/rankone-convexity-does-not-imply-quasiconvexity/2E0BBDE4340DDDDE863F7C365C72C555
|access-date=2022-06-30
}}
The case or is still an open problem, known as Morrey's conjecture.{{cite journal
|title= Numerical Approaches for Investigating Quasiconvexity in the Context of Morrey's Conjecture
|first1=Jendrik |last1=Voss |first2=Robert J. |last2=Martin |first3=Oliver |last3=Sander |first4=Siddhant |last4=Kumar |first5=Dennis M. |last5=Kochmann |first6=Patrizio |last6=Neff
|journal=Journal of Nonlinear Science |date= 2022-01-17
|volume=32 |issue=6 |page=77 |doi=10.1007/s00332-022-09820-x |arxiv= 2201.06392
|bibcode=2022JNS....32...77V |s2cid=246016000 }}
Relation to weak lower semi-continuity
Under certain growth condition of the integrand, the sequential weakly lower semi-continuity (swlsc) of an integral functional in an appropriate Sobolev space is equivalent to the quasiconvexity of the integrand. Acerbi and Fusco proved the following theorem:
Theorem: If is Carathéodory function and
it holds . Then the functional
\mathcal{F}[u] = \int_\Omega f(x, u(x),\nabla u(x)) dx
is swlsc in the Sobolev Space with if and only if is quasiconvex. Here is a positive constant and an integrable function.{{cite journal
|last1=Acerbi
|first1=Emilio
|last2=Fusco
|first2= Nicola
|author-link2=Nicola Fusco
|year=1984
|title=Semicontinuity problems in the calculus of variations
|journal=Archive for Rational Mechanics and Analysis
|volume=86
|issue=1–2
|pages=125–145
|publisher= Springer, Berlin/Heidelberg
|doi=10.1007/BF00275731
|bibcode=1984ArRMA..86..125A
|s2cid=121494852
|url=https://link.springer.com/article/10.1007/BF00275731
|access-date=2022-06-30
}}
Other authors use different growth conditions and different proof conditions.{{cite book
|last=Rindler
|first=Filip
|title=Calculus of Variations
|publisher=Springer International Publishing AG
|series=Universitext
|year=2018
|doi=10.1007/978-3-319-77637-8
|isbn=978-3-319-77636-1
|page=128
|last=Dacorogna
|first=Bernard
|author-link=Bernard Dacorogna
|title=Direct Methods in the Calculus of Variations
|publisher=Springer Science+Business Media, LLC
|series= Applied mathematical sciences
|year=2008
|volume=78
|doi=10.1007/978-0-387-55249-1
|isbn=978-0-387-35779-9
|edition= 2nd
|page=368
}} The first proof of it was due to Morrey in his paper, but he required additional assumptions.{{cite journal
|last1=Morrey
|first1=Charles B.
|author-link=Charles B. Morrey Jr.
|year=1952
|title=Quasiconvexity and the Lower Semicontinuity of Multiple Integrals
|journal=Pacific Journal of Mathematics
|volume=2
|issue=1
|pages=25–53
|publisher=Mathematical Sciences Publishers
|doi=10.2140/pjm.1952.2.25
|url=https://projecteuclid.org/journals/pacific-journal-of-mathematics/volume-2/issue-1/Quasi-convexity-and-the-lower-semicontinuity-of-multiple-integrals/pjm/1103051941.full
|access-date=2022-06-30
|doi-access=free
}}
References
{{reflist}}