Quasisymmetric function
{{for|quasisymmetric functions in the theory of metric spaces or complex analysis|quasisymmetric map}}
In algebra and in particular in algebraic combinatorics, a quasisymmetric function is any element in the ring of quasisymmetric functions which is in turn a subring of the formal power series ring with a countable number of variables. This ring generalizes the ring of symmetric functions. This ring can be realized as a specific limit of the rings of quasisymmetric polynomials in n variables, as n goes to infinity. This ring serves as universal structure in which relations between quasisymmetric polynomials can be expressed in a way independent of the number n of variables (but its elements are neither polynomials nor functions).
Definitions
The ring of quasisymmetric functions, denoted QSym, can be defined over any commutative ring R such as the integers.
Quasisymmetric
functions are power series of bounded degree in variables with coefficients in R, which are shift invariant in the sense that the coefficient of the monomial is equal to the coefficient of the monomial for any strictly increasing sequence of positive integers
indexing the variables and any positive integer sequence of exponents.
Stanley, Richard P. Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999. {{ISBN|0-521-56069-1}} (hardback) {{ISBN|0-521-78987-7}} (paperback).
Much of the study of quasisymmetric functions is based on that of symmetric functions.
A quasisymmetric function in finitely many variables is a quasisymmetric polynomial.
Both symmetric and quasisymmetric polynomials may be characterized in terms of actions of the symmetric group
on a polynomial ring in variables .
One such action of permutes variables,
changing a polynomial by iteratively swapping pairs
of variables having consecutive indices.
Those polynomials unchanged by all such swaps
form the subring of symmetric polynomials.
A second action of conditionally permutes variables,
changing a polynomial
by swapping pairs of variables
except in monomials containing both variables.{{citation|last1=Hivert|first1=Florent|title=Hecke Algebras, Difference Operators, and Quasi-Symmetric Functions|journal= Advances in Mathematics |volume=155 |year=2000 |pages=181–238 |issue= 2|doi=10.1006/aima.1999.1901|doi-access=free}}
Those polynomials unchanged by all such conditional swaps form
the subring of quasisymmetric polynomials. One quasisymmetric polynomial in four variables is the polynomial
:
The simplest symmetric polynomial containing these monomials is
:
\begin{align}
x_1^2 x_2 x_3 + x_1^2 x_2 x_4 + x_1^2 x_3 x_4 + x_2^2 x_3 x_4
+ x_1 x_2^2 x_3 + x_1 x_2^2 x_4 + x_1 x_3^2 x_4 + x_2 x_3^2 x_4 \\
{} + x_1 x_2 x_3^2 + x_1 x_2 x_4^2 + x_1 x_3 x_4^2 + x_2 x_3 x_4^2. \,
\end{align}
Important bases
QSym is a graded R-algebra, decomposing as
:
where is the -span of all quasisymmetric functions that are homogeneous of degree . Two natural bases for are the monomial basis and the fundamental basis indexed by compositions of , denoted . The monomial basis consists of and all formal power series
:
The fundamental basis consists and all formal power series
:
where means we can obtain by adding together adjacent parts of , for example, (3,2,4,2) (3,1,1,1,2,1,2). Thus, when the ring is the ring of rational numbers, one has
:
Then one can define the algebra of symmetric functions as the subalgebra of QSym spanned by the monomial symmetric functions and all formal power series where the sum is over all compositions which rearrange to the integer partition . Moreover, we have . For example, and
Other important bases for quasisymmetric functions include the basis of quasisymmetric Schur functions,{{citation|first1=J. |last1=Haglund|first2= K. |last2=Luoto|first3=S. |last3=Mason |first4= S. |last4=van Willigenburg | author4-link=Stephanie van Willigenburg |title= Quasisymmetric Schur functions|journal=Journal of Combinatorial Theory | series=Series A|volume= 118 |year=2011|pages= 463–490|doi=10.1016/j.jcta.2009.11.002|issue=2|arxiv=0810.2489|doi-access=free}} the "type I" and "type II" quasisymmetric power sums,{{citation|first1=Christina |last1=Ballantine|first2=Zajj |last2=Daughtery|first3=Angela |last3=Hicks |first4=Sarah |last4=Mason |first5=Elizabeth |last5=Niese |title=On Quasisymmetric Power Sums|journal=Journal of Combinatorial Theory | series=Series A|volume= 175 |year=2020|page=105273 |arxiv=1710.11613|doi=10.1016/j.jcta.2020.105273|s2cid=51775423 }} and bases related to enumeration in matroids.{{citation|first=K. |last=Luoto|title=A matroid-friendly basis for the quasisymmetric functions|journal=Journal of Combinatorial Theory | series=Series A|volume= 115 |year=2008|pages= 777–798|bibcode=2007arXiv0704.0836L|arxiv=0704.0836|doi=10.1016/j.jcta.2007.10.003|issue=5|doi-access=free}}{{citation|first1=L. |last1=Billera| authorlink1=Louis Billera | first2=N. |last2=Jia |first3= V. |last3=Reiner|title= A quasisymmetric function for matroids|journal= European Journal of Combinatorics|volume= 30 |year=2009|pages= 1727–1757|bibcode=2006math......6646B|arxiv=math/0606646|doi=10.1016/j.ejc.2008.12.007|doi-access=free|issue=8}}
Applications
Quasisymmetric functions have been applied in enumerative combinatorics, symmetric function theory, representation theory, and number theory. Applications of
quasisymmetric functions include enumeration of P-partitions,
Stanley, Richard P. Ordered structures and partitions, Memoirs of the American Mathematical Society, No. 119, American Mathematical Society, 1972.
Gessel, Ira. Multipartite P-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983), 289–317, Contemp. Math., 34, Amer. Math. Soc., Providence, RI, 1984.
permutations,{{citation|
last1=Gessel|first1=Ira|author1-link=Ira Gessel|last2= Reutenauer|first2= Christophe|title=Counting permutations with given cycle structure and descent set |journal=Journal of Combinatorial Theory |series=Series A |volume=64 |year=1993|pages= 189–215|issue= 2|
doi=10.1016/0097-3165(93)90095-P|doi-access=free}}{{citation|last1= Shareshian|first1= John|last2= Wachs|first2= Michelle L.|author2-link= Michelle L. Wachs |title=-Eulerian polynomials: excedance number and major index|journal= Electron. Res. Announc. Amer. Math. Soc. |volume=13 |year=2007|pages= 33–45|doi= 10.1090/S1079-6762-07-00172-2|issue= 4|arxiv= math/0608274|s2cid= 15394306}}{{citation|last1= Shareshian|first1= John|last2= Wachs|first2= Michelle L.|author2-link= Michelle L. Wachs |title= Eulerian quasisymmetric functions|journal=Advances in Mathematics |volume=225 |issue=6 |year= 2010 |pages=2921–2966|doi= 10.1016/j.aim.2010.05.009|doi-access=free|arxiv= 0812.0764}}
{{citation|last=Hyatt|first= Matthew|title=Eulerian quasisymmetric functions for the type B Coxeter group and other wreath product groups|arxiv=1007.0459|bibcode=2010arXiv1007.0459H|journal=Advances in Applied Mathematics |volume=48 |year=2012 |issue= 3|pages=465–505 |doi=10.1016/j.aam.2011.11.005|s2cid= 119118644}}
tableaux,{{citation|last=Stanley|first=Richard P.|authorlink=Richard P. Stanley|title=On the number of reduced decompositions of elements of Coxeter groups|journal= European Journal of Combinatorics |volume= 5 |year=1984 |pages= 359–372 |issue= 4 |doi=10.1016/s0195-6698(84)80039-6|doi-access=free}} chains of posets,{{citation|last=Ehrenborg|first= Richard|author-link=Richard Ehrenborg |title=On posets and Hopf algebras|journal= Advances in Mathematics |volume= 119
|year=1996|pages= 1–25|issue= 1|doi=10.1006/aima.1996.0026|doi-access=free}} reduced decompositions in finite Coxeter groups (via Stanley symmetric functions), and parking functions.Haglund, James; The q,t-Catalan numbers and the space of diagonal harmonics.
University Lecture Series, 41. American Mathematical Society, Providence, RI, 2008. viii+167 pp. {{ISBN|978-0-8218-4411-3}}; 0-8218-4411-3 In symmetric function theory and representation theory, applications include the study of Schubert polynomials,{{citation|last1=Billey|first1= Sara C.|last2=Jockusch|first2=William|last3= Stanley|first3= Richard P.|author3-link=Richard P. Stanley|title=Some combinatorial properties of Schubert polynomials|journal=Journal of Algebraic Combinatorics |volume=2 |year=1993|pages= 345–374|issue= 4|doi=10.1023/A:1022419800503|url=https://deepblue.lib.umich.edu/bitstream/2027.42/46173/1/10801_2004_Article_415600.pdf|doi-access=free}}{{citation|last1=Fomin|first1=Sergey|author1-link=Sergey Fomin|last2=Stanley|first2= Richard P. | author2-link=Richard P. Stanley |title=Schubert polynomials and the nil-Coxeter algebra|journal= Advances in Mathematics |volume=103 |year=1994|pages= 196–207|issue= 2|doi=10.1006/aima.1994.1009|doi-access=free}} Macdonald polynomials,{{citation|last=Assaf|first= Sami|title=Dual Equivalence Graphs I: A combinatorial proof of LLT and Macdonald positivity|year= 2010|arxiv=1005.3759|bibcode = 2010arXiv1005.3759A }}
Hecke algebras,{{citation|last1=Duchamp|first1= Gérard|last2= Krob|first2= Daniel|last3= Leclerc|first3= Bernard|last4= Thibon|first4= Jean-Yves|title= Fonctions quasi-symétriques, fonctions symétriques non commutatives et algèbres de Hecke à |journal= C. R. Acad. Sci. Paris |series=Sér. I Math. |volume=322 |year=1996|pages= 107–112|issue= 2}} and Kazhdan–Lusztig polynomials.{{citation |last1=Billera |first1= Louis J. |authorlink1=Louis Billera |last2= Brenti |first2= Francesco |year=2011 |title= Quasisymmetric functions and Kazhdan–Lusztig polynomials| arxiv=0710.3965 |mode=cs2|journal = Israel Journal of Mathematics|volume = 184|pages = 317–348|doi = 10.1007/s11856-011-0070-0|doi-access=free}} Often quasisymmetric functions provide a powerful bridge between combinatorial structures and symmetric functions.
Related algebras
As a graded Hopf algebra, the dual of the ring of quasisymmetric functions is the ring of noncommutative symmetric functions.
Every symmetric function is also a quasisymmetric function, and hence the ring of symmetric functions is a subalgebra of the ring of quasisymmetric functions.
The ring of quasisymmetric functions is the terminal object in category of graded Hopf algebras with a single character.{{citation|last1=Aguiar|first1= Marcelo|last2=Bergeron|first2= Nantel|last3= Sottile|first3= Frank |title=Combinatorial Hopf algebras and generalized Dehn–Sommerville relations|journal= Compositio Mathematica |volume=142 |year=2006|pages= 1–30 |issue= 1|bibcode=2003math.....10016A|arxiv=math/0310016|doi=10.1112/S0010437X0500165X|s2cid= 2635356}}
Hence any such Hopf algebra has a morphism to the ring of quasisymmetric functions.
One example of this is the peak algebra.{{citation|last=Stembridge|first= John R. |title=Enriched P-partitions|journal= Trans. Amer. Math. Soc. |volume=349|year=1997|pages= 763–788 |issue=2|doi=10.1090/S0002-9947-97-01804-7|doi-access=free}}
References
{{Reflist}}
External links
- [http://www.birs.ca/events/2010/5-day-workshops/10w5031 BIRS Workshop on Quasisymmetric Functions]