Quaternionic structure
{{Short description|Axiomatic system in mathematics}}
In mathematics, a quaternionic structure or {{math|Q}}-structure is an axiomatic system that abstracts the concept of a quaternion algebra over a field.
A quaternionic structure is a triple {{math|(G, Q, q)}} where {{math|G}} is an elementary abelian group of exponent {{math|2}} with a distinguished element {{math|−1}}, {{math|Q}} is a pointed set with distinguished element {{math|1}}, and {{math|q}} is a symmetric surjection {{math|G×G → Q}} satisfying axioms
:
\text{2.} \quad &q(a,b) = q(a,c) \Leftrightarrow q(a,bc) = 1,\\
\text{3.} \quad &q(a,b) = q(c,d) \Rightarrow \exists x\mid q(a,b) = q(a,x), q(c,d) = q(c,x)\end{align}.
Every field {{math|F}} gives rise to a {{math|Q}}-structure by taking {{math|G}} to be {{math|F∗/F∗2}}, {{math|Q}} the set of Brauer classes of quaternion algebras in the Brauer group of {{math|F}} with the split quaternion algebra as distinguished element and {{math|q(a,b)}} the quaternion algebra {{math|(a,b)F}}.
References
{{reflist}}
- {{cite book | title=Introduction to Quadratic Forms over Fields | volume=67 | series=Graduate Studies in Mathematics | first=Tsit-Yuen | last=Lam | author-link=T. Y. Lam | publisher=American Mathematical Society | year=2005 | isbn=0-8218-1095-2 | zbl=1068.11023 | mr = 2104929 }}