Racah polynomials

{{format footnotes |date=May 2024}}

In mathematics, Racah polynomials are orthogonal polynomials named after Giulio Racah, as their orthogonality relations are equivalent to his orthogonality relations for Racah coefficients.

The Racah polynomials were first defined by {{harvtxt|Wilson|1978}} and are given by

:p_n(x(x+\gamma+\delta+1)) = {}_4F_3\left[\begin{matrix} -n &n+\alpha+\beta+1&-x&x+\gamma+\delta+1\\

\alpha+1&\gamma+1&\beta+\delta+1\\ \end{matrix};1\right].

Orthogonality

:\sum_{y=0}^N\operatorname{R}_n(x;\alpha,\beta,\gamma,\delta)

\operatorname{R}_m(x;\alpha,\beta,\gamma,\delta)\frac{\gamma+\delta+1+2y}{\gamma+\delta+1+y} \omega_y=h_n\operatorname{\delta}_{n,m},{{dlmf|id=18.25#iii|title=Wilson Class: Definitions|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}

:when \alpha+1=-N,

:where \operatorname{R} is the Racah polynomial,

:x=y(y+\gamma+\delta+1),

:\operatorname{\delta}_{n,m} is the Kronecker delta function and the weight functions are

:\omega_y=\frac{(\alpha+1)_y(\beta+\delta+1)_y(\gamma+1)_y(\gamma+\delta+2)_y}{(-\alpha+\gamma+\delta+1)_y(-\beta+\gamma+1)_y(\delta+1)_yy!},

:and

:h_n=\frac{(-\beta)_N(\gamma+\delta+1)_N}{(-\beta+\gamma+1)_N(\delta+1)_N}\frac{(n+\alpha+\beta+1)_nn!}{(\alpha+\beta+2)_{2n}}\frac{(\alpha+\delta-\gamma+1)_n(\alpha-\delta+1)_n(\beta+1)_n}{(\alpha+1)_n(\beta+\delta+1)_n(\gamma+1)_n},

:(\cdot)_n is the Pochhammer symbol.

Rodrigues-type formula

:\omega(x;\alpha,\beta,\gamma,\delta)\operatorname{R}_n(\lambda(x);\alpha,\beta,\gamma,\delta)=(\gamma+\delta+1)_n\frac{\nabla^n}{\nabla\lambda(x)^n}\omega(x;\alpha+n,\beta+n,\gamma+n,\delta),{{Citation | last1=Koekoek | first1=Roelof | last2=Swarttouw | first2=René F. | title=The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue | year=1998 | url=https://fa.ewi.tudelft.nl/~koekoek/askey/ch1/par2/par2.html}}

:where \nabla is the backward difference operator,

:\lambda(x)=x(x+\gamma+\delta+1).

Generating functions

There are three generating functions for x\in\{0,1,2,...,N\}

:when \beta+\delta+1=-N\quador\quad\gamma+1=-N,

:{}_2F_1(-x,-x+\alpha-\gamma-\delta;\alpha+1;t){}_2F_1(x+\beta+\delta+1,x+\gamma+1;\beta+1;t)

:\quad=\sum_{n=0}^N\frac{(\beta+\delta+1)_n(\gamma+1)_n}{(\beta+1)_nn!}\operatorname{R}_n(\lambda(x);\alpha,\beta,\gamma,\delta)t^n,

:when \alpha+1=-N\quador\quad\gamma+1=-N,

:{}_2F_1(-x,-x+\beta-\gamma;\beta+\delta+1;t){}_2F_1(x+\alpha+1,x+\gamma+1;\alpha-\delta+1;t)

:\quad=\sum_{n=0}^N\frac{(\alpha+1)_n(\gamma+1)_n}{(\alpha-\delta+1)_nn!}\operatorname{R}_n(\lambda(x);\alpha,\beta,\gamma,\delta)t^n,

:when \alpha+1=-N\quador\quad\beta+\delta+1=-N,

:{}_2F_1(-x,-x-\delta;\gamma+1;t){}_2F_1(x+\alpha+1;x+\beta+\gamma+1;\alpha+\beta-\gamma+1;t)

:\quad=\sum_{n=0}^N\frac{(\alpha+1)_n(\beta+\delta+1)_n}{(\alpha+\beta-\gamma+1)_nn!}\operatorname{R}_n(\lambda(x);\alpha,\beta,\gamma,\delta)t^n.

Connection formula for Wilson polynomials

When \alpha=a+b-1,\beta=c+d-1,\gamma=a+d-1,\delta=a-d,x\rightarrow-a+ix,

:\operatorname{R}_n(\lambda(-a+ix);a+b-1,c+d-1,a+d-1,a-d)=\frac{\operatorname{W}_n(x^2;a,b,c,d)}{(a+b)_n(a+c)_n(a+d)_n},

:where \operatorname{W} are Wilson polynomials.

q-analog

{{harvtxt|Askey|Wilson|1979}} introduced the q-Racah polynomials defined in terms of basic hypergeometric functions by

:p_n(q^{-x}+q^{x+1}cd;a,b,c,d;q) = {}_4\phi_3\left[\begin{matrix} q^{-n} &abq^{n+1}&q^{-x}&q^{x+1}cd\\

aq&bdq&cq\\ \end{matrix};q;q\right].

They are sometimes given with changes of variables as

:W_n(x;a,b,c,N;q) = {}_4\phi_3\left[\begin{matrix} q^{-n} &abq^{n+1}&q^{-x}&cq^{x-n}\\

aq&bcq&q^{-N}\\ \end{matrix};q;q\right].

References

{{Reflist}}

  • {{Citation | last1=Askey | first1=Richard | last2=Wilson | first2=James | title=A set of orthogonal polynomials that generalize the Racah coefficients or 6-j symbols | doi=10.1137/0510092 |mr=541097 | year=1979 | journal=SIAM Journal on Mathematical Analysis | issn=0036-1410 | volume=10 | issue=5 | pages=1008–1016| url=https://apps.dtic.mil/sti/pdfs/ADA054552.pdf | archive-url=https://web.archive.org/web/20170925235936/http://www.dtic.mil/get-tr-doc/pdf?AD=ADA054552 | url-status=live | archive-date=September 25, 2017 }}
  • {{citation|first=J.|last= Wilson|title= Hypergeometric series recurrence relations and some new orthogonal functions|series= Ph.D. thesis|publisher= Univ. Wisconsin, Madison|year= 1978}}

Category:Orthogonal polynomials

{{algebra-stub}}