Radicial morphism
In algebraic geometry, a morphism of schemes
:f: X → Y
is called radicial or universally injective, if, for every field K, the induced map X(K) → Y(K) is injective. (EGA I, (3.5.4)) This is a generalization of the notion of a purely inseparable extension of fields (sometimes called a radicial extension, which should not be confused with a radical extension).
It suffices to check this for K algebraically closed.
This is equivalent to the following condition: f is injective on the topological spaces and for every point x in X, the extension of the residue fields
:k(f(x)) ⊂ k(x)
is radicial, i.e. purely inseparable.
It is also equivalent to every base change of f being injective on the underlying topological spaces. (Thus the term universally injective.)
Radicial morphisms are stable under composition, products and base change. If gf is radicial, so is f.
References
- {{Citation | last1=Grothendieck | first1=Alexandre | author1-link=Alexandre Grothendieck | last2=Dieudonné | first2=Jean | author2-link=Jean Dieudonné | title=Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné) : I. Le langage des schémas | url=http://www.numdam.org:80/numdam-bin/feuilleter?id=PMIHES_1960__4_ | year=1960 | journal=Publications Mathématiques de l'IHÉS | issn=1618-1913 | volume=4 | issue=1 | pages=5–228 | doi=10.1007/BF02684778| url-access=subscription }}, section I.3.5.
- {{Citation | last1=Bourbaki | first1=Nicolas | author1-link= Nicolas Bourbaki | title=Algebra | publisher=Springer-Verlag | location=Berlin, New York | isbn=978-3-540-19373-9 | year=1988}}, see section V.5.