Radiogenomics

The term radiogenomics is used in two contexts: either to refer to the study of genetic variation associated with response to radiation (radiation genomics) or to refer to the correlation between cancer imaging features and gene expression (imaging genomics).

Radiation genomics

In radiation genomics, radiogenomics is used to refer to the study of genetic variation associated with response to radiation therapy. Genetic variation, such as single nucleotide polymorphisms, is studied in relation to a cancer patient's risk of developing toxicity following radiation therapy.{{cite journal|vauthors=Barnett GC, Elliott RM, Alsner J, Andreassen CN, Abdelhay O, Burnet NG, Chang-Claude J, Coles CE, Gutiérrez-Enríquez S, Fuentes-Raspall MJ, Alonso-Muñoz MC, Kerns S, Raabe A, Symonds RP, Seibold P, Talbot CJ, Wenz F, Wilkinson J, Yarnold J, Dunning AM, Rosenstein BS, West CM, Bentzen SM|title=Individual patient data meta-analysis shows no association between the SNP rs1800469 in TGFB and late radiotherapy toxicity.|journal=Radiother Oncol|year=2012|volume=105|issue=3|pages=289–95|pmid=23199655|doi=10.1016/j.radonc.2012.10.017|pmc=3593101}}{{cite journal|vauthors=Barnett GC, Coles CE, Elliott RM, Baynes C, Luccarini C, Conroy D, Wilkinson JS, Tyrer J, Misra V, Platte R, Gulliford SL, Sydes MR, Hall E, Bentzen SM, Dearnaley DP, Burnet NG, Pharoah PD, Dunning AM, West CM|title=Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: a prospective analysis study.|journal=Lancet Oncol|year=2012|volume=13|issue=1|pages=65–77|pmid=22169268|doi=10.1016/S1470-2045(11)70302-3|doi-access=free}}{{cite journal|vauthors=Talbot CJ, Tanteles GA, Barnett GC, Burnet NG, Chang-Claude J, Coles CE, Davidson S, Dunning AM, Mills J, Murray RJ, Popanda O, Seibold P, West CM, Yarnold JR, Symonds RP|title=A replicated association between polymorphisms near TNFα and risk for adverse reactions to radiotherapy.|journal=Br J Cancer|year=2012|volume=107|issue=4|pages=748–53|pmid=22767148|doi=10.1038/bjc.2012.290|pmc=3419947}} It is also used in the context of studying the genomics of tumor response to radiation therapy.{{cite journal|last=Das|first=AK|author2=Bell MH |author3=Nirodi CS |author4=Story MD |author5=Minna JD |title=Radiogenomics predicting tumor responses to radiotherapy in lung cancer.|journal=Sem Radiat Oncol|year=2010|volume=20|issue=3|pages=149–55|pmid=20685577|doi=10.1016/j.semradonc.2010.01.002 |pmc=2917342}}{{Cite journal|last1=Yard|first1=Brian D.|last2=Adams|first2=Drew J.|last3=Chie|first3=Eui Kyu|last4=Tamayo|first4=Pablo|last5=Battaglia|first5=Jessica S.|last6=Gopal|first6=Priyanka|last7=Rogacki|first7=Kevin|last8=Pearson|first8=Bradley E.|last9=Phillips|first9=James|date=2016-04-25|title=A genetic basis for the variation in the vulnerability of cancer to DNA damage|journal=Nature Communications|volume=7|pages=11428|doi=10.1038/ncomms11428|issn=2041-1723|pmc=4848553|pmid=27109210|bibcode=2016NatCo...711428Y}}

The term radiogenomics was coined in 2002 by Andreassen et al. (2002){{cite journal|last=Andreassen|first=CN|author2=Alsner J |author3=Overgaard J |title=Does variability in normal tissue reactions after radiotherapy have a genetic basis--where and how to look for it?|journal=Radiother Oncol|year=2002|volume=64|issue=2|pages=131–40|pmid=12242122|doi=10.1016/s0167-8140(02)00154-8}} as an analogy to pharmacogenomics, which studies the genetic variation associated with drug responses. See also West et al. (2005){{cite journal|vauthors=West CM, McKay MJ, Hölscher T, Baumann M, Stratford IJ, Bristow RG, Iwakawa M, Imai T, Zingde SM, Anscher MS, Bourhis J, Begg AC, Haustermans K, Bentzen SM, Hendry JH|title=Molecular markers predicting radiotherapy response: report and recommendations from an International Atomic Energy Agency technical meeting.|journal=Int J Radiat Oncol Biol Phys|year=2005|volume=62|issue=5|pages=1264–73|pmid=16029781|doi=10.1016/j.ijrobp.2005.05.001}} and Bentzen (2006).{{cite journal|last=Bentzen|first=SM|title=Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology.|journal=Nat Rev Cancer|year=2006|volume=6|issue=9|pages=702–13|pmid=16929324|doi=10.1038/nrc1950|s2cid=1190053}}

The Radiogenomics Consortium

In 2009,{{cite journal |vauthors=West C, Rosenstein BS, Alsner J, Azria D, Barnett G, Begg A, Bentzen S, Burnet N, Chang-Claude J, Chuang E, Coles C, De Ruyck K, De Ruysscher D, Dunning A, Elliott R, Fachal L, Hall J, Haustermans K, Herskind C, Hoelscher T, Imai T, Iwakawa M, Jones D, Kulich C, ((EQUAL-ESTRO)), Langendijk JH, O'Neils P, Ozsahin M, Parliament M, Polanski A, Rosenstein B, Seminara D, Symonds P, Talbot C, Thierens H, Vega A, West C, Yarnold J |title=Establishment of a Radiogenomics Consortium |journal=International Journal of Radiation Oncology, Biology, Physics |year=2010 |volume=76 |issue=5 |pages=1295–1296 |pmid=20338472 |doi=10.1016/j.ijrobp.2009.12.017}}{{cite journal|last=West|first=C|author2=Rosenstein BS |journal=Radiother Oncol|year=2010|volume=94|issue=1|pages=117–8|pmid=20074824|doi=10.1016/j.radonc.2009.12.007|title=Establishment of a radiogenomics consortium}} a Radiogenomics Consortium (RGC) was established to facilitate and promote multi-centre collaboration of researchers linking genetic variants with response to radiation therapy. The Radiogenomics Consortium (http://epi.grants.cancer.gov/radiogenomics/) is a Cancer Epidemiology Consortium supported by the Epidemiology and Genetics Research Program of the National Cancer Institute of the National Institutes of Health.{{cite web|title=National Cancer Institute of Health - Epidemiology and Genomics Research Program|url=http://epi.grants.cancer.gov/Consortia/single/rgc.html}} RGC researchers have completed numerous clinical studies that identified genetic variants associated with radiation toxicities in patients with prostate, breast, lung, head and neck, and other cancers.

=Past meetings=

  • 2009 - Manchester, UK. Consortium proposed.
  • 2010 - New York, USA.
  • 2011 - London, UK.
  • 2012 - Boston, USA.
  • 2013 - Cambridge (also REQUITE launch), UK.
  • 2014 - Heidelberg, Germany.
  • 2015 - Montpellier, France.
  • 2016 - Maastricht, Netherlands.
  • 2017 - Barcelona, Spain.
  • 2018 - Manchester, UK.
  • 2019 - Rochester, USA.
  • 2020 - Online.
  • 2021 - Online.
  • 2022 - Groningen, Netherlands.
  • 2023 - Manchester, UK.
  • 2024 - Aarhus, Denmark.

Imaging genomics <ref>[[Radiomics]]</ref>

Radiological images are used to diagnose disease on a large scale: tissue imaging correlates with tissue pathology. The addition of genomic data including DNA microarrays, miRNA, RNA-Seq allows new correlations to be made between cellular genomics and tissue-scale imaging.

See also

References

{{Reflist|30em}}

Further reading

  • https://epi.grants.cancer.gov/radiogenomics/
  • {{cite journal |last1=Kerns |first1=Sarah L. |last2=Dorling |first2=Leila |last3=Fachal |first3=Laura |last4=Bentzen |first4=Søren |last5=Pharoah |first5=Paul D.P. |last6=Barnes |first6=Daniel R. |last7=Gómez-Caamaño |first7=Antonio |last8=Carballo |first8=Ana M. |last9=Dearnaley |first9=David P. |last10=Peleteiro |first10=Paula |last11=Gulliford |first11=Sarah L. |last12=Hall |first12=Emma |last13=Michailidou |first13=Kyriaki |last14=Carracedo |first14=Ángel |last15=Sia |first15=Michael |last16=Stock |first16=Richard |last17=Stone |first17=Nelson N. |last18=Sydes |first18=Matthew R. |last19=Tyrer |first19=Jonathan P. |last20=Ahmed |first20=Shahana |last21=Parliament |first21=Matthew |last22=Ostrer |first22=Harry |last23=Rosenstein |first23=Barry S. |last24=Vega |first24=Ana |last25=Burnet |first25=Neil G. |last26=Dunning |first26=Alison M. |last27=Barnett |first27=Gillian C. |last28=West |first28=Catharine M.L. |last29=Radiogenomics |first29=Consortium. |title=Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer |journal=eBioMedicine |date=August 2016 |volume=10 |pages=150–163 |doi=10.1016/j.ebiom.2016.07.022 |pmid=27515689 |pmc=5036513 }}
  • {{cite journal |doi=10.1371/journal.pone.0041522 |pmid=22870228 |title=A Novel Volume-Age-KPS (VAK) Glioblastoma Classification Identifies a Prognostic Cognate microRNA-Gene Signature |year=2012 |editor1-last=Lesniak |editor1-first=Maciej S |last1=Zinn |first1=Pascal O. |last2=Sathyan |first2=Pratheesh | last3=Mahajan |first3=Bhanu |last4=Bruyere |first4=John |last5=Hegi |first5=Monika |last6=Majumder |first6=Sadhan |last7=Colen |first7=Rivka R. |journal=PLOS ONE|volume=7 |issue=8 |pages=e41522 |pmc=3411674|bibcode=2012PLoSO...741522Z |doi-access=free }}
  • {{cite journal |doi=10.1038/nbt1306 |title=Decoding global gene expression programs in liver cancer by noninvasive imaging |year=2007 |last1=Segal |first1=Eran |last2=Sirlin |first2=Claude B |last3=Ooi |first3=Clara |last4=Adler |first4=Adam S |last5=Gollub |first5=Jeremy |last6=Chen |first6=Xin |last7=Chan |first7=Bryan K |last8=Matcuk |first8=George R |last9=Barry |first9=Christopher T |last10=Chang |first10=Howard Y |last11=Kuo |first11=Michael D |journal=Nature Biotechnology |volume=25 |issue=6 |pages=675–80 |pmid=17515910|s2cid=10499664 |display-authors=8 }}
  • {{cite journal|vauthors=Andreassen CN, Barnett GC, Langendijk JA, Alsner J, De Ruysscher D, Krause M, Bentzen SM, Haviland JS, Griffin C, Poortmans P, Yarnold JR|title=Conducting radiogenomic research - Do not forget careful consideration of the clinical data.|journal=Radiother Oncol|year=2012|volume=105|issue=3|pages=337–40|pmid=23245646|doi=10.1016/j.radonc.2012.11.004}}
  • {{cite journal|last=West|first=CM|author2=Barnett GC |title=Genetics and genomics of radiotherapy toxicity: towards prediction|journal=Genome Med|year=2011|volume=3|issue=8|pages=52|pmid=21861849|doi=10.1186/gm268|pmc=3238178 |doi-access=free }}
  • {{cite journal | pmid = 28233873 | doi=10.1038/srep43381 | volume=7 | title=Computational methods using genome-wide association studies to predict radiotherapy complications and to identify correlative molecular processes | pmc=5324069 | year=2017 | journal=Sci Rep | page=43381 | last1 = Oh | first1 = JH | last2 = Kerns | first2 = S | last3 = Ostrer | first3 = H | last4 = Powell | first4 = SN | last5 = Rosenstein | first5 = B | last6 = Deasy | first6 = JO| bibcode=2017NatSR...743381O }}
  • {{cite journal |last1=Hall |first1=William A. |last2=Bergom |first2=Carmen |last3=Thompson |first3=Reid F. |last4=Baschnagel |first4=Andrew M. |last5=Vijayakumar |first5=Srinivasan |last6=Willers |first6=Henning |last7=Li |first7=X. Allen |last8=Schultz |first8=Christopher J. |last9=Wilson |first9=George D. |last10=West |first10=Catharine M.L. |last11=Capala |first11=Jacek |last12=Coleman |first12=C. Norman |last13=Torres-Roca |first13=Javier F. |last14=Weidhaas |first14=Joanne |last15=Feng |first15=Felix Y. |title=Precision Oncology and Genomically Guided Radiation Therapy: A Report From the American Society for Radiation Oncology/American Association of Physicists in Medicine/National Cancer Institute Precision Medicine Conference |journal=International Journal of Radiation Oncology, Biology, Physics |date=June 2018 |volume=101 |issue=2 |pages=274–284 |doi=10.1016/j.ijrobp.2017.05.044 |pmid=28964588 }}
  • {{cite journal | pmid = 29502932 | doi=10.1016/j.ijrobp.2018.01.054 | volume=101 | issue=1 | title=Machine Learning on a Genome-wide Association Study to Predict Late Genitourinary Toxicity After Prostate Radiation Therapy | pmc=5886789 | year=2018 | journal=Int J Radiat Oncol Biol Phys | pages=128–135 | last1 = Lee | first1 = S | last2 = Kerns | first2 = S | last3 = Ostrer | first3 = H | last4 = Rosenstein | first4 = B | last5 = Deasy | first5 = JO | last6 = Oh | first6 = JH}}
  • {{cite journal | last1 = Johnson | first1 = K | last2 = Chang-Claude | first2 = J | last3 = Critchley | first3 = AM | last4 = Kyriacou | first4 = C | last5 = Lavers | first5 = S | last6 = Rattay | first6 = T | last7 = Seibold | first7 = P | last8 = Webb | first8 = A | last9 = West | first9 = C | last10 = Symonds | first10 = RP | last11 = Talbot | first11 = CJ | last12 = Consortium | first12 = Requite | date = Jan 2019 | title = Genetic variants predict optimal timing of radiotherapy to reduce side-effects in breast cancer patients | journal = Clin Oncol (R Coll Radiol) | volume = 31 | issue = 1| pages = 9–16 | pmid = 30389261 | doi=10.1016/j.clon.2018.10.001| doi-access = free | hdl = 2381/43295 | hdl-access = free }}
  • {{cite journal | last1 = Mbah | first1 = C | last2 = De Ruyck | first2 = K | last3 = De Schrijver | first3 = S. | last4 = De Sutter | first4 = C. | last5 = Schiettecatte | first5 = K. | last6 = Monten | first6 = C. | last7 = Paelinck | first7 = L. | last8 = De Neve | first8 = W. | last9 = Thierens | first9 = H. | last10 = West | first10 = C. | last11 = Amorim | first11 = G. | last12 = Thas | first12 = O. | last13 = Veldeman | first13 = L. | year = 2018 | title = A new approach for modeling patient overall radiosensitivity and predicting multiple toxicity endpoints for breast cancer patients | journal = Acta Oncologica | volume = 57 | issue = 5| pages = 604–12 | pmid = 29299946 | doi=10.1080/0284186X.2017.1417633| doi-access = free }}

Category:Radiology

Category:Genomics