Real gas#Berthelot and modified Berthelot model

{{short description|Non-hypothetical gases whose molecules occupy space and have interactions}}

{{Thermodynamics sidebar}}

Real gases are non-ideal gases whose molecules occupy space and have interactions; consequently, they do not adhere to the ideal gas law.

To understand the behaviour of real gases, the following must be taken into account:

For most applications, such a detailed analysis is unnecessary, and the ideal gas approximation can be used with reasonable accuracy. On the other hand, real-gas models have to be used near the condensation point of gases, near critical points, at very high pressures, to explain the Joule–Thomson effect, and in other less usual cases. The deviation from ideality can be described by the compressibility factor Z.

Models

File:Real Gas Isotherms.svg of real gas


Dark blue curves – isotherms below the critical temperature. Green sections – metastable states.


The section to the left of point F – normal liquid.

Point F – boiling point.

Line FG – equilibrium of liquid and gaseous phases.

Section FA – superheated liquid.

Section F′A – stretched liquid (p<0).

Section AC – analytic continuation of isotherm, physically impossible.

Section CG – supercooled vapor.

Point G – dew point.

The plot to the right of point G – normal gas.

Areas FAB and GCB are equal.


Red curve – Critical isotherm.

Point K – critical point.


Light blue curves – supercritical isotherms]]

{{Main|Equation of state}}

=Van der Waals model=

{{Main|van der Waals equation}}

Real gases are often modeled by taking into account their molar weight and molar volume

RT = \left(p + \frac{a}{V_\text{m}^2}\right)\left(V_\text{m} - b\right)

or alternatively:

p = \frac{RT}{V_m - b} - \frac{a}{V_m^2}

Where p is the pressure, T is the temperature, R the ideal gas constant, and Vm the molar volume. a and b are parameters that are determined empirically for each gas, but are sometimes estimated from their critical temperature (Tc) and critical pressure (pc) using these relations:

\begin{align}

a &= \frac{27R^2 T_\text{c}^2}{64p_\text{c}}, &

b &= \frac{RT_\text{c}}{8p_\text{c}}

\end{align}

The constants at critical point can be expressed as functions of the parameters a, b:

\begin{align}

p_c &= \frac{a}{27b^2}, &

V_{m,c} &= 3b, \\[2pt]

T_c &= \frac{8a}{27bR}, &

Z_c &= \frac{3}{8}

\end{align}

With the reduced properties

p_r = p / p_\text{c}

,

V_r = V_\text{m} / V_\text{m,c}

,

T_r = T / T_\text{c}

the equation can be written in the reduced form:

p_r = \frac{8}{3}\frac{T_r}{V_r - \frac{1}{3}} - \frac{3}{V_r^2}

=Redlich–Kwong model=

File:Critical isotherm Redlich-Kwong model.png

The Redlich–Kwong equation is another two-parameter equation that is used to model real gases. It is almost always more accurate than the van der Waals equation, and often more accurate than some equations with more than two parameters. The equation is

RT = \left(p + \frac{a}{\sqrt{T}V_\text{m}\left(V_\text{m} + b\right)}\right)\left(V_\text{m} - b\right)

or alternatively:

p = \frac{RT}{V_\text{m} - b} - \frac{a}{\sqrt{T}V_\text{m}\left(V_\text{m} + b\right)}

where a and b are two empirical parameters that are not the same parameters as in the van der Waals equation. These parameters can be determined:

\begin{align}

a &= 0.42748\, \frac{R^2{T_\text{c}}^\frac{5}{2}}{p_\text{c}}, \\[2pt]

b &= 0.08664\, \frac{RT_\text{c}}{p_\text{c}}

\end{align}

The constants at critical point can be expressed as functions of the parameters a, b:

\begin{align}

p_c &= {\left[\frac{(\sqrt[3]{2} - 1)^7}{3} \, R \, \frac{a^2}{b^5}\right]}^{1/3}, &

V_{m,c} &= \frac{b}{\sqrt[3]{2}-1}, \\[4pt]

T_c &= {\left[3 {\left(\sqrt[3]{2} - 1\right)}^2 \frac{a}{bR}\right]}^{2/3}, &

Z_c &= \frac{1}{3}

\end{align}

Using p_r = p/p_\text{c}, V_r = V_\text{m}/V_\text{m,c}, T_r = T / T_\text{c}

the equation of state can be written in the reduced form:

p_r = \frac{3 T_r}{V_r - b'} - \frac{1}{b'\sqrt{T_r} V_r \left(V_r + b'\right)} with b' = \sqrt[3]{2} - 1 \approx 0.26

=Berthelot and modified Berthelot model=

The Berthelot equation (named after D. Berthelot)D. Berthelot in Travaux et Mémoires du Bureau international des Poids et Mesures – Tome XIII (Paris: Gauthier-Villars, 1907) is very rarely used,

p = \frac{RT}{V_\text{m} - b} - \frac{a}{TV_\text{m}^2}

but the modified version is somewhat more accurate

p = \frac{RT}{V_\text{m}} \left[1 + \frac{9}{128} \cdot \frac{p}{p_c} \cdot \frac{T_c}{T} \left(1 - 6 \frac{T_\text{c}^2}{T^2}\right)\right]

=Dieterici model=

This model (named after C. DietericiC. Dieterici, Ann. Phys. Chem. Wiedemanns Ann. 69, 685 (1899)) fell out of usage in recent years

p = \frac{RT}{V_\text{m} - b} \exp\left(-\frac{a}{V_\text{m}RT}\right)

with parameters a, b. These can be normalized by dividing with the critical point state{{NoteTag|The critical state can be calculated by starting with p = \frac{RT}{{(V_m-b)} e^{\frac{a}{RTV_m}}}, and taking the derivative with respect to V_m. The equation (\partial_{V_m}p)_T = 0 is a quadratic equation in V_m, and it has a double root precisely when V_m = V_c; T=T_c.}}:\tilde p = p \frac{(2be)^2}{a}; \quad \tilde T =T \frac{4bR}{a}; \quad \tilde V_m = V_m \frac{1}{2b}which casts the equation into the reduced form:{{Cite book |last=Pippard |first=Alfred B. |title=Elements of classical thermodynamics: for advanced students of physics |date=1981 |publisher=Univ. Pr |isbn=978-0-521-09101-5 |edition=Repr |location=Cambridge |pages=74}}\tilde p \left(2\tilde V_m - 1\right) = \tilde T \exp\left(2 - \frac{2}{\tilde T \tilde V_m}\right)

=Clausius model=

The Clausius equation (named after Rudolf Clausius) is a very simple three-parameter equation used to model gases.

RT = \left(p + \frac{a}{T {\left(V_\text{m} + c\right)}^2}\right) \left(V_\text{m} - b\right)

or alternatively:

p = \frac{RT}{V_\text{m} - b} - \frac{a}{T\left(V_\text{m} + c\right)^2}

where

\begin{align}

a &= \frac{27R^2 T_\text{c}^3}{64p_\text{c}}, \\[4pt]

b &= V_\text{c} - \frac{RT_\text{c}}{4p_\text{c}}, \\[4pt]

c &= \frac{3RT_\text{c}}{8p_\text{c}} - V_\text{c}

\end{align}

where Vc is critical volume.

=Virial model=

The Virial equation derives from a perturbative treatment of statistical mechanics.

pV_\text{m} = RT\left[1 + \frac{B(T)}{V_\text{m}} + \frac{C(T)}{V_\text{m}^2} + \frac{D(T)}{V_\text{m}^3} + \cdots\right]

or alternatively

pV_\text{m} = RT \left[1 + B'(T) p + C'(T) p^2 + D'(T) p^3 + \cdots\right]

where A, B, C, A′, B′, and C′ are temperature dependent constants.

=Peng–Robinson model=

Peng–Robinson equation of state (named after D.-Y. Peng and D. B. Robinson{{cite journal |title= A New Two-Constant Equation of State |journal= Industrial and Engineering Chemistry: Fundamentals |volume= 15 |year= 1976 |pages= 59–64 |author1=Peng, D. Y. |author2=Robinson, D. B. |name-list-style=amp |doi= 10.1021/i160057a011|s2cid= 98225845 }}) has the interesting property being useful in modeling some liquids as well as real gases.

p = \frac{RT}{V_\text{m} - b} - \frac{a(T)}{V_\text{m}\left(V_\text{m} + b\right) + b\left(V_\text{m} - b\right)}

=Wohl model=

File:Isotherm wohl model.png

File:ZPhCh87p9f.png

The Wohl equation (named after A. Wohl{{cite journal |author1=A. Wohl |title=Investigation of the condition equation |journal=Zeitschrift für Physikalische Chemie |date=1914 |volume=87 |pages=1–39 |doi=10.1515/zpch-1914-8702 |s2cid=92940790 |language=en}}) is formulated in terms of critical values, making it useful when real gas constants are not available, but it cannot be used for high densities, as for example the critical isotherm shows a drastic decrease of pressure when the volume is contracted beyond the critical volume.

p = \frac{RT}{V_\text{m} - b} - \frac{a}{TV_\text{m}\left(V_\text{m} - b\right)} + \frac{c}{T^2 V_\text{m}^3}\quad

or:

\left(p - \frac{c}{T^2 V_\text{m}^3}\right)\left(V_\text{m} - b\right) = RT - \frac{a}{TV_\text{m}}

or, alternatively:

RT = \left(p + \frac{a}{TV_\text{m}(V_\text{m} - b)} - \frac{c}{T^2 V_\text{m}^3}\right)\left(V_\text{m} - b\right)

where

\begin{align}

a &= 6p_\text{c} T_\text{c} V_\text{m,c}^2, &

b &= \frac{V_\text{m,c}}{4}, \\[2pt]

c &= 4p_\text{c} T_\text{c}^2 V_\text{m,c}^3

\end{align} where V_\text{m,c} = \frac{4}{15}\frac{RT_c}{p_c},

p_\text{c}

, T_c are (respectively) the molar volume, the pressure and the temperature at the critical point.

And with the reduced properties p_r = p/p_\text{c}, V_r = V_\text{m} / V_\text{m,c}, T_r = T / T_\text{c}

one can write the first equation in the reduced form:

p_r = \frac{15}{4}\frac{T_r}{V_r - \frac{1}{4}} - \frac{6}{T_r V_r\left(V_r - \frac{1}{4}\right)} + \frac{4}{T_r^2 V_r^3}

=Beattie–Bridgeman model=

Yunus A. Cengel and Michael A. Boles, Thermodynamics: An Engineering Approach 7th Edition, McGraw-Hill, 2010, {{ISBN|007-352932-X}} This equation is based on five experimentally determined constants. It is expressed as

p = \frac{RT}{V_\text{m}^2}\left(1 - \frac{c}{V_\text{m}T^3}\right)(V_\text{m} + B) - \frac{A}{V_\text{m}^2}

where

\begin{align}

A &= A_0 \left(1 - \frac{a}{V_\text{m}}\right), &

B &= B_0 \left(1 - \frac{b}{V_\text{m}}\right)

\end{align}

This equation is known to be reasonably accurate for densities up to about 0.8 ρcr, where ρcr is the density of the substance at its critical point. The constants appearing in the above equation are available in the following table when p is in kPa, Vm is in \frac{\text{m}^3}{\text{k}\,\text{mol}}, T is in K and R = 8.314 \mathrm{\frac{kPa \cdot m^3}{kmol \cdot K}}Gordan J. Van Wylen and Richard E. Sonntage, Fundamental of Classical Thermodynamics, 3rd ed, New York, John Wiley & Sons, 1986 P46 table 3.3

class="wikitable"
Gas

! A0

! a

! B0

! b

! c

Air

| 131.8441

0.019310.04611−0.0011014.34×104
Argon, Ar

| 130.7802

0.023280.039310.05.99×104
Carbon dioxide, CO2

| 507.2836

0.071320.104760.072356.60×105
Ethane, C2H6

| 595.791

0.058610.094000.0191590.00×104
Helium, He

| 2.1886

0.059840.014000.040
Hydrogen, H2

| 20.0117

−0.005060.02096−0.04359504
Methane, CH4

| 230.7069

0.018550.05587|
0.0158712.83×104
Nitrogen, N2

| 136.2315

0.026170.05046−0.006914.20×104
Oxygen, O2

| 151.0857

0.025620.046240.0042084.80×104

=Benedict–Webb–Rubin model=

{{Main|Benedict–Webb–Rubin equation}}

The BWR equation,

p = RTd + d^2\left(RT(B + bd) - \left(A + ad - a\alpha d^4\right) - \frac{1}{T^2}\left[C - cd\left(1 + \gamma d^2\right) \exp\left(-\gamma d^2\right)\right]\right)

where d is the molar density and where a, b, c, A, B, C, α, and γ are empirical constants. Note that the γ constant is a derivative of constant α and therefore almost identical to 1.

Thermodynamic expansion work

The expansion work of the real gas is different than that of the ideal gas by the quantity \int_{V_i}^{V_f} \left(\frac{RT}{V_m} - P_\text{real}\right) dV .

See also

References

{{Reflist}}{{reflist|group=note}}

Further reading

  • {{cite book

|last1=Kondepudi |first1=D. K.

|last2=Prigogine |first2=I.

|year=1998

|title=Modern thermodynamics: From heat engines to dissipative structures

|publisher=John Wiley & Sons

|isbn=978-0-471-97393-5

}}

  • {{cite book

|last1=Hsieh |first1=J. S.

|year=1993

|title=Engineering Thermodynamics

|publisher=Prentice-Hall

|isbn=978-0-13-275702-7

}}

  • {{cite book

|last1=Walas |first1=S. M.

|year=1985

|title=Fazovyje ravnovesija v chimiceskoj technologii v 2 castach

|publisher=Butterworth Publishers

|isbn=978-0-409-95162-2

}}

  • {{cite journal

|last1=Aznar |first1=M.

|last2=Silva Telles |first2=A.

|year=1997

|title=A Data Bank of Parameters for the Attractive Coefficient of the Peng-Robinson Equation of State

|journal=Brazilian Journal of Chemical Engineering

|volume=14 |issue=1 |pages=19–39

|doi=10.1590/S0104-66321997000100003

|doi-access=free

}}

  • {{cite book

|last1=Rao |first1=Y. V. C

|year=2004

|isbn=978-81-7371-461-0

|title=An introduction to thermodynamics

|publisher=Universities Press

}}

  • {{cite book

|last1=Xiang |first1=H. W.

|year=2005

|title=The Corresponding-States Principle and its Practice: Thermodynamic, Transport and Surface Properties of Fluids

|publisher=Elsevier

|isbn=978-0-08-045904-2

}}