Rectified 10-orthoplexes#Quadrirectified 10-orthoplex

class=wikitable align=right
align=center valign=top

|120px
10-orthoplex
{{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1}}

|120px
Rectified 10-orthoplex
{{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node}}

|120px
Birectified 10-orthoplex
{{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node}}

|120px
Trirectified 10-orthoplex
{{CDD|node|4|node|3|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node}}

align=center valign=top

|120px
Quadrirectified 10-orthoplex
{{CDD|node|4|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node}}

|120px
Quadrirectified 10-cube
{{CDD|node|4|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node}}

|120px
Trirectified 10-cube
{{CDD|node|4|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node}}

|120px
Birectified 10-cube
{{CDD|node|4|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}

align=center valign=top

|120px
Rectified 10-cube
{{CDD|node|4|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}

|120px
10-cube
{{CDD|node_1|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}

colspan=4|Orthogonal projections in A10 Coxeter plane

{{-}}

In ten-dimensional geometry, a rectified 10-orthoplex is a convex uniform 10-polytope, being a rectification of the regular 10-orthoplex.

There are 10 rectifications of the 10-orthoplex. Vertices of the rectified 10-orthoplex are located at the edge-centers of the 9-orthoplex. Vertices of the birectified 10-orthoplex are located in the triangular face centers of the 10-orthoplex. Vertices of the trirectified 10-orthoplex are located in the tetrahedral cell centers of the 10-orthoplex.

These polytopes are part of a family of 1023 uniform 10-polytopes with BC10 symmetry.

Rectified 10-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="280"

!bgcolor=#e7dcc3 colspan=2|Rectified 10-orthoplex

bgcolor=#e7dcc3|Typeuniform 10-polytope
bgcolor=#e7dcc3|Schläfli symbolt1{38,4}
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node}}
{{CDD|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|split1|nodes}}
bgcolor=#e7dcc3|9-faces
bgcolor=#e7dcc3|8-faces
bgcolor=#e7dcc3|7-faces
bgcolor=#e7dcc3|6-faces
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges2880
bgcolor=#e7dcc3|Vertices180
bgcolor=#e7dcc3|Vertex figure8-orthoplex prism
bgcolor=#e7dcc3|Petrie polygonicosagon
bgcolor=#e7dcc3|Coxeter groupsC10, [4,38]
D10, [37,1,1]
bgcolor=#e7dcc3|Propertiesconvex

In ten-dimensional geometry, a rectified 10-orthoplex is a 10-polytope, being a rectification of the regular 10-orthoplex.

The rectified 10-orthoplex is the vertex figure of the demidekeractic honeycomb.

: {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node|3|node|split1|nodes}} or {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|4|node}}

= Alternate names =

  • Rectified decacross (Acronym: rake) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/rake.htm (o3x3o3o3o3o3o3o3o4o - rake)]}}

= Construction =

There are two Coxeter groups associated with the rectified 10-orthoplex, one with the C10 or [4,38] Coxeter group, and a lower symmetry with two copies of 9-orthoplex facets, alternating, with the D10 or [37,1,1] Coxeter group.

= Cartesian coordinates =

Cartesian coordinates for the vertices of a rectified 10-orthoplex, centered at the origin, edge length \sqrt{2} are all permutations of:

: (±1,±1,0,0,0,0,0,0,0,0)

= Root vectors =

Its 180 vertices represent the root vectors of the simple Lie group D10. The vertices can be seen in 3 hyperplanes, with the 45 vertices rectified 9-simplices facets on opposite sides, and 90 vertices of an expanded 9-simplex passing through the center. When combined with the 20 vertices of the 9-orthoplex, these vertices represent the 200 root vectors of the simple Lie group B10.

= Images =

{{B10 Coxeter plane graphs|t8|150|NoA9=true|NoA5=true|NoA7=true|NoA3=true}}

Birectified 10-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="280"

!bgcolor=#e7dcc3 colspan=2|Birectified 10-orthoplex

bgcolor=#e7dcc3|Typeuniform 10-polytope
bgcolor=#e7dcc3|Schläfli symbolt2{38,4}
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|3|node|4|node}}
{{CDD|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|split1|nodes}}
bgcolor=#e7dcc3|9-faces
bgcolor=#e7dcc3|8-faces
bgcolor=#e7dcc3|7-faces
bgcolor=#e7dcc3|6-faces
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges
bgcolor=#e7dcc3|Vertices
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsC10, [4,38]
D10, [37,1,1]
bgcolor=#e7dcc3|Propertiesconvex

= Alternate names =

  • Birectified decacross (Acronym: brake) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/brake.htm (o3o3x3o3o3o3o3o3o4o - brake)]}}

= Cartesian coordinates =

Cartesian coordinates for the vertices of a birectified 10-orthoplex, centered at the origin, edge length \sqrt{2} are all permutations of:

: (±1,±1,±1,0,0,0,0,0,0,0)

= Images =

{{B10 Coxeter plane graphs|t7|150|NoA9=true|NoA5=true|NoA7=true|NoA3=true}}

Trirectified 10-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="280"

!bgcolor=#e7dcc3 colspan=2|Trirectified 10-orthoplex

bgcolor=#e7dcc3|Typeuniform 10-polytope
bgcolor=#e7dcc3|Schläfli symbolt3{38,4}
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node|4|node}}
{{CDD|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|split1|nodes}}
bgcolor=#e7dcc3|9-faces
bgcolor=#e7dcc3|8-faces
bgcolor=#e7dcc3|7-faces
bgcolor=#e7dcc3|6-faces
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges
bgcolor=#e7dcc3|Vertices
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsC10, [4,38]
D10, [37,1,1]
bgcolor=#e7dcc3|Propertiesconvex

= Alternate names =

  • Trirectified decacross (Acronym: trake) (Jonathan Bowers)Klitzing, (o3o3o3x3o3o3o3o3o4o - trake)

= Cartesian coordinates =

Cartesian coordinates for the vertices of a trirectified 10-orthoplex, centered at the origin, edge length \sqrt{2} are all permutations of:

: (±1,±1,±1,±1,0,0,0,0,0,0)

= Images =

{{B10 Coxeter plane graphs|t6|150|NoA9=true|NoA5=true|NoA7=true|NoA3=true}}

Quadrirectified 10-orthoplex

class="wikitable" align="right" style="margin-left:10px" width="280"

!bgcolor=#e7dcc3 colspan=2|Quadrirectified 10-orthoplex

bgcolor=#e7dcc3|Typeuniform 10-polytope
bgcolor=#e7dcc3|Schläfli symbolt4{38,4}
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams{{CDD|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node|4|node}}
{{CDD|node|3|node|3|node|3|node|3|node_1|3|node|3|node|3|node|split1|nodes}}
bgcolor=#e7dcc3|9-faces
bgcolor=#e7dcc3|8-faces
bgcolor=#e7dcc3|7-faces
bgcolor=#e7dcc3|6-faces
bgcolor=#e7dcc3|5-faces
bgcolor=#e7dcc3|4-faces
bgcolor=#e7dcc3|Cells
bgcolor=#e7dcc3|Faces
bgcolor=#e7dcc3|Edges
bgcolor=#e7dcc3|Vertices
bgcolor=#e7dcc3|Vertex figure
bgcolor=#e7dcc3|Coxeter groupsC10, [4,38]
D10, [37,1,1]
bgcolor=#e7dcc3|Propertiesconvex

= Alternate names =

  • Quadrirectified decacross (Acronym: terake) (Jonthan Bowers)Klitzing, (o3o3o3o3x3o3o3o3o4o - terake)

= Cartesian coordinates =

Cartesian coordinates for the vertices of a quadrirectified 10-orthoplex, centered at the origin, edge length \sqrt{2} are all permutations of:

: (±1,±1,±1,±1,±1,0,0,0,0,0)

= Images =

{{B10 Coxeter plane graphs|t6|150|NoA9=true|NoA5=true|NoA7=true|NoA3=true}}

Notes

{{reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • {{KlitzingPolytopes|polyxenna.htm|10D uniform polytopes (polyxenna) with acronyms}} x3o3o3o3o3o3o3o3o4o - ka, o3x3o3o3o3o3o3o3o4o - rake, o3o3x3o3o3o3o3o3o4o - brake, o3o3o3x3o3o3o3o3o4o - trake, o3o3o3o3x3o3o3o3o4o - terake, o3o3o3o3o3x3o3o3o4o - terade, o3o3o3o3o3o3x3o3o4o - trade, o3o3o3o3o3o3o3x3o4o - brade, o3o3o3o3o3o3o3o3x4o - rade, o3o3o3o3o3o3o3o3o4x - deker {{sfn whitelist| CITEREFKlitzing}}