Rectified 24-cell honeycomb
class="wikitable" align="right" style="margin-left:10px" width="320"
!bgcolor=#e7dcc3 colspan=2|Rectified 24-cell honeycomb | |
bgcolor=#ffffff align=center colspan=2|(No image) | |
bgcolor=#e7dcc3|Type | Uniform 4-honeycomb |
bgcolor=#e7dcc3|Schläfli symbol | r{3,4,3,3} rr{3,3,4,3} r2r{4,3,3,4} r2r{4,3,31,1} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|4|node|3|node|3|node}} {{CDD|node_1|3|node|3|node_1|4|node|3|node}} {{CDD|node|4|node_1|3|node|3|node_1|4|node}} {{CDD|nodes_11|split2|node|3|node_1|4|node}} = {{CDD|node_h0|4|node_1|3|node|3|node_1|4|node}} {{CDD|nodes_11|split2|node|split1|nodes_11}} = {{CDD|node|3|node_1|4|node_g|3sg|node_g|3g|node_g}} {{CDD|nodes_11|split2|node|split1|nodes_11}} = {{CDD|node_h0|4|node_1|3|node|3|node_1|4|node_h0}} |
bgcolor=#e7dcc3|4-face type | Tesseract 40px Rectified 24-cell 40px |
bgcolor=#e7dcc3|Cell type | Cube 20px Cuboctahedron 20px |
bgcolor=#e7dcc3|Face type | Square Triangle |
bgcolor=#e7dcc3|Vertex figure | 80px Tetrahedral prism |
bgcolor=#e7dcc3|Coxeter groups | , [3,4,3,3] , [4,3,3,4] , [4,3,31,1] , [31,1,1,1] |
bgcolor=#e7dcc3|Properties | Vertex transitive |
In four-dimensional Euclidean geometry, the rectified 24-cell honeycomb is a uniform space-filling honeycomb. It is constructed by a rectification of the regular 24-cell honeycomb, containing tesseract and rectified 24-cell cells.
Alternate names
- Rectified icositetrachoric tetracomb
- Rectified icositetrachoric honeycomb
- Cantellated 16-cell honeycomb
- Bicantellated tesseractic honeycomb
Symmetry constructions
There are five different symmetry constructions of this tessellation. Each symmetry can be represented by different arrangements of colored rectified 24-cell and tesseract facets. The tetrahedral prism vertex figure contains 4 rectified 24-cells capped by two opposite tesseracts.
class="wikitable"
!Vertex |
align=center
|rowspan=2| |{{CDD|node|3|node_1|4|node|3|node|3|node}} |4: {{CDD|node|3|node_1|4|node|3|node}} |80px |{{CDD|node|3|node|3|node|2|node}}, [3,3,2] |
align=center
|{{CDD|node_1|3|node|3|node_1|4|node|3|node}} |3: {{CDD|node|3|node|4|node_1|3|node}} |80px |{{CDD|node|3|node|2|node}}, [3,2] |
align=center
| |{{CDD|node|4|node_1|3|node|3|node_1|4|node}} |2,2: {{CDD|node_1|3|node|3|node_1|4|node}} |80px |{{CDD|node|2|node|2|node}}, [2,2] |
align=center
| |{{CDD|nodes_11|split2|node|3|node_1|4|node}} |1,1: {{CDD|node_1|3|node|3|node_1|4|node}} |80px |{{CDD|node|2|node}}, [2] |
align=center
| |{{CDD|nodes_11|split2|node|split1|nodes_11}} |1,1,1,1: |80px |{{CDD|node}}, [] |
See also
Regular and uniform honeycombs in 4-space:
References
- Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, {{isbn|0-486-61480-8}} p. 296, Table II: Regular honeycombs
- Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{isbn|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs) Model 93
- {{KlitzingPolytopes|flat.htm|4D|Euclidean tesselations}}, o3o3o4x3o, o4x3o3x4o - ricot - O93
{{Honeycombs}}