Rectified 6-cubes#Rectified 6-cube
class=wikitable align=right width=360 style="margin-left:1em;" |
align=center
|120px |120px |120px |
align=center
|120px |120px |120px |
colspan=4|Orthogonal projections in A6 Coxeter plane |
---|
In six-dimensional geometry, a rectified 6-cube is a convex uniform 6-polytope, being a rectification of the regular 6-cube.
There are unique 6 degrees of rectifications, the zeroth being the 6-cube, and the 6th and last being the 6-orthoplex. Vertices of the rectified 6-cube are located at the edge-centers of the 6-cube. Vertices of the birectified 6-cube are located in the square face centers of the 6-cube.
{{clear}}
Rectified 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Rectified 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t1{4,34} or r{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node_1|3|node|3|node|3|node|3|node}} = {{CDD|node_1|split1-43|nodes|3b|nodeb|3b|nodeb|3b|nodeb}} {{CDD|nodes_11|split2|node|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|5-faces | 76 |
bgcolor=#e7dcc3|4-faces | 444 |
bgcolor=#e7dcc3|Cells | 1120 |
bgcolor=#e7dcc3|Faces | 1520 |
bgcolor=#e7dcc3|Edges | 960 |
bgcolor=#e7dcc3|Vertices | 192 |
bgcolor=#e7dcc3|Vertex figure | 5-cell prism |
bgcolor=#e7dcc3|Petrie polygon | Dodecagon |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Rectified hexeract (acronym: rax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/rax.htm (o3o3o3o3x4o - rax)]}}
= Construction =
The rectified 6-cube may be constructed from the 6-cube by truncating its vertices at the midpoints of its edges.
= Coordinates =
The Cartesian coordinates of the vertices of the rectified 6-cube with edge length {{radic|2}} are all permutations of:
:
= Images =
{{6-cube Coxeter plane graphs|t1|150}}
Birectified 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Birectified 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Coxeter symbol | 0311 |
bgcolor=#e7dcc3|Schläfli symbol | t2{4,34} or 2r{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node|3|node_1|3|node|3|node|3|node}} = {{CDD|node_1|split1|nodes|4a3b|nodes|3b|nodeb}} {{CDD|nodes|split2|node_1|3|node|3|node|3|node}} = {{CDD|nodes|3ab|nodes_01lr|split5c|nodes}} |
bgcolor=#e7dcc3|5-faces | 76 |
bgcolor=#e7dcc3|4-faces | 636 |
bgcolor=#e7dcc3|Cells | 2080 |
bgcolor=#e7dcc3|Faces | 3200 |
bgcolor=#e7dcc3|Edges | 1920 |
bgcolor=#e7dcc3|Vertices | 240 |
bgcolor=#e7dcc3|Vertex figure | {4}x{3,3} duoprism |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Birectified hexeract (acronym: brox) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/brox.htm (o3o3o3x3o4o - brox)]}}
- Rectified 6-demicube
= Construction =
The birectified 6-cube may be constructed from the 6-cube by truncating its vertices at the midpoints of its edges.
= Coordinates =
The Cartesian coordinates of the vertices of the rectified 6-cube with edge length {{radic|2}} are all permutations of:
:
= Images =
{{6-cube Coxeter plane graphs|t2|150}}
Related polytopes
These polytopes are part of a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.
{{Hexeract family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} o3o3o3o3x4o - rax, o3o3o3x3o4o - brox {{sfn whitelist| CITEREFKlitzing}}
External links
- {{MathWorld|title=Hypercube|urlname=Hypercube}}
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}