Relativistic chaos

{{Short description|Theory in physics}}

{{Multiple issues|

{{Orphan|date=April 2016}}

{{no footnotes|date=January 2014}}

}}

{{general relativity}}

In physics, relativistic chaos is the application of chaos theory to dynamical systems described primarily by general relativity, and also special relativity.

Barrow (1982) showed that the Einstein equations exhibit chaotic behaviour and modelled the Mixmaster universe as a dynamical system. Later work showed that relativistic chaos is coordinate invariant (Motter 2003).

See also

References

  • {{cite journal

|author=X. Ni

|display-authors=etal

|year=2012

|title=Effect of chaos on relativistic quantum tunneling

|journal=Europhysics Letters

|volume=98 |number=5 |pages=50007

|arxiv=

|bibcode=2012EL.....9850007N

|doi=10.1209/0295-5075/98/50007

|s2cid=568332

|url=https://apps.dtic.mil/sti/pdfs/ADA566483.pdf|archive-url=https://web.archive.org/web/20170617081808/http://www.dtic.mil/get-tr-doc/pdf?AD=ADA566483|url-status=live|archive-date=June 17, 2017}}

  • {{cite journal

|author1=P. Schewe

|author2=J. Riordon

|author3=B. Stein

|year=2003

|title=Relativistic Chaos

|url=http://www.aip.org/enews/physnews/2003/split/664-2.html

|journal=Physical News Update

|number=664

|archive-url=https://web.archive.org/web/20110805003151/http://www.aip.org/enews/physnews/2003/split/664-2.html

|archive-date=2011-08-05

}}

  • {{cite journal

|author=J. D. Barrow

|year=1982

|title=General relativistic chaos and nonlinear dynamics

|journal=General Relativity and Gravitation

|volume=14 |issue=6 |pages=523–530

|bibcode=1982GReGr..14..523B

|doi=10.1007/BF00756214

|s2cid=121254445

|url=http://plouffe.fr/simon/math/math10280.pdf

}}

  • {{cite journal

|author=A. E. Motter

|year=2003

|title=Relativistic chaos is coordinate invariant

|journal=Physical Review Letters

|volume=93 |issue=23 |pages=231101

|arxiv=gr-qc/0305020

|bibcode=2003PhRvL..91w1101M

|doi=10.1103/PhysRevLett.91.231101

|pmid=14683170

|s2cid=32645063

|url=http://chaosbook.org/library/Motter03.pdf

}}

  • {{cite book

|author=H.-W. Lee

|year=1995

|chapter=Relativistic chaos in time-driven linear and nonlinear oscillators

|editor1=P. Garbaczewski

|editor2=M. Wolf

|editor3=A. Weron

|title=Proceedings of the XXXIst Winter School of Theoretical Physics

|series=Lecture Notes in Physics

|volume=457 |pages=503–506

|bibcode=1995LNP...457..503L

|doi=10.1007/3-540-60188-0_76

|isbn=3-540-60188-0

}}

Category:Chaos theory

Category:General relativity

Category:Mathematical physics

{{relativity-stub}}

{{chaos-stub}}

{{math-physics-stub}}