Remez inequality

In mathematics, the Remez inequality, discovered by the Soviet mathematician Evgeny Yakovlevich Remez {{harv|Remez|1936}}, gives a bound on the sup norms of certain polynomials, the bound being attained by the Chebyshev polynomials.

The inequality

Let σ be an arbitrary fixed positive number. Define the class of polynomials πn(σ) to be those polynomials p of degree n for which

:|p(x)| \le 1

on some set of measure ≥ 2 contained in the closed interval [−1, 1+σ]. Then the Remez inequality states that

:\sup_{p \in \pi_n(\sigma)} \left\|p\right\|_\infty = \left\|T_n\right\|_\infty

where Tn(x) is the Chebyshev polynomial of degree n, and the supremum norm is taken over the interval [−1, 1+σ].

Observe that Tn is increasing on [1, +\infty], hence

: \|T_n\|_\infty = T_n(1+\sigma).

The R.i., combined with an estimate on Chebyshev polynomials, implies the following corollary: If J ⊂ R is a finite interval, and E ⊂ J is an arbitrary measurable set, then

{{NumBlk|:|\max_{x \in J} |p(x)| \leq \left( \frac{4 \,\, \operatorname{mes}J}{\operatorname{mes}E} \right)^n \sup_{x \in E} |p(x)||{{EquationRef|⁎}}}}

for any polynomial p of degree n.

Extensions: Nazarov–Turán lemma

Inequalities similar to ({{EquationNote|⁎}}) have been proved for different classes of functions, and are known as Remez-type inequalities. One important example is Nazarov's inequality for exponential sums {{harv|Nazarov|1993}}:

: Nazarov's inequality. Let

:: p(x) = \sum_{k=1}^n a_k e^{\lambda_k x}

: be an exponential sum (with arbitrary λk ∈C), and let J ⊂ R be a finite interval, E ⊂ J—an arbitrary measurable set. Then

:: \max_{x \in J} |p(x)| \leq e^{\max_k |\Re \lambda_k| \, \operatorname{mes}J} \left( \frac{C \,\, \operatorname{mes}J}{\operatorname{mes}E} \right)^{n-1} \sup_{x \in E} |p(x)|~,

: where C > 0 is a numerical constant.

In the special case when λk are pure imaginary and integer, and the subset E is itself an interval, the inequality was proved by Pál Turán and is known as Turán's lemma.

This inequality also extends to L^p(\mathbb{T}),\ 0\leq p\leq2 in the following way

: \|p\|_{L^p(\mathbb{T})} \leq e^{A(n-1) \operatorname{mes}(\mathbb{T} \setminus E)} \|p\|_{L^p(E)}

for some A > 0 independent of p, E, and n. When

:\operatorname{mes} E <1-\frac{\log n}{n}

a similar inequality holds for p > 2. For p = ∞ there is an extension to multidimensional polynomials.

Proof: Applying Nazarov's lemma to E = E_\lambda = \{x : |p(x)|\leq\lambda\},\ \lambda>0 leads to

:\max_{x \in J} |p(x)| \leq e^{\max_k |\Re \lambda_k| \, \operatorname{mes} J} \left( \frac{C \,\, \operatorname{mes} J}{\operatorname{mes} E_\lambda} \right)^{n-1} \sup_{x \in E_\lambda} |p(x)| \leq e^{\max_k |\Re \lambda_k| \, \operatorname{mes} J} \left( \frac{C \,\, \operatorname{mes} J}{\operatorname{mes} E_\lambda} \right)^{n-1} \lambda

thus

:\operatorname{mes} E_\lambda \leq C \,\, \operatorname{mes} J\left(\frac{\lambda e^{\max_k |\Re \lambda_k| \, \operatorname{mes}J}}{\max_{x \in J} |p(x)|} \right)^{\frac{1}{n-1}}

Now fix a set E and choose \lambda such that \operatorname{mes} E_\lambda\leq\tfrac{1}{2}\operatorname{mes}E, that is

:\lambda = \left(\frac{\operatorname{mes} E}{2C \operatorname{mes}J}\right)^{n-1}e^{-\max_k |\Re \lambda_k| \, \operatorname{mes}J}\max_{x \in J} |p(x)|

Note that this implies:

  1. \operatorname{mes}E\setminus E_{\lambda}\ge \tfrac{1}{2} \operatorname{mes}E .
  2. \forall x \in E \setminus E_{\lambda} : |p(x)| > \lambda .

Now

:\begin{align}

\int_{x\in E}|p(x)|^p\,\mbox{d}x &\geq \int_{x\in E \setminus E_\lambda}|p(x)|^p\,\mbox{d}x \\[6pt]

&\geq \lambda^p\frac{1}{2}\operatorname{mes}E \\[6pt]

&= \frac{1}{2}\operatorname{mes}E \left(\frac{\operatorname{mes}E}{2C \operatorname{mes}J}\right)^{p(n-1)}e^{-p\max_k |\Re \lambda_k| \, \operatorname{mes}J}\max_{x \in J} |p(x)|^p \\[6pt]

&\geq \frac{1}{2} \frac{\operatorname{mes}E}{\operatorname{mes}J}\left(\frac{\operatorname{mes} E}{2C \operatorname{mes}J}\right)^{p(n-1)}e^{-p\max_k |\Re \lambda_k| \, \operatorname{mes}J}\int_{x \in J} |p(x)|^p\,\mbox{d}x,

\end{align}

which completes the proof.

Pólya inequality

One of the corollaries of the Remez inequality is the Pólya inequality, which was proved by George Pólya {{harv|Pólya|1928}}, and states that the Lebesgue measure of a sub-level set of a polynomial p of degree n is bounded in terms of the leading coefficient LC(p) as follows:

:\operatorname{mes} \left\{ x \in \R : \left|P(x)\right| \leq a \right\} \leq 4 \left(\frac{a}{2 \mathrm{LC}(p)}\right)^{1/n}, \quad a>0~.

References

  • {{cite journal|last = Remez|first = E. J.|author-link=Evgeny Yakovlevich Remez|title = Sur une propriété des polynômes de Tchebyscheff|journal = Comm. Inst. Sci. Kharkow|volume = 13|year = 1936|pages = 93–95}}
  • {{cite journal|last = Bojanov|first = B.|title = Elementary Proof of the Remez Inequality|journal = The American Mathematical Monthly|volume = 100|issue = 5|date = May 1993|pages = 483–485|doi = 10.2307/2324304|jstor = 2324304|publisher = Mathematical Association of America}}
  • {{cite journal|last = Fontes-Merz|first = N.|title = A multidimensional version of Turan's lemma|journal = Journal of Approximation Theory|volume = 140 |issue = 1|pages = 27–30|year=2006|doi = 10.1016/j.jat.2005.11.012|doi-access = free}}
  • {{cite journal|last = Nazarov|first = F.|author-link=Fedor Nazarov|title = Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type|journal = Algebra i Analiz|volume = 5|issue = 4|pages = 3–66|year=1993}}
  • {{cite book|last = Nazarov|first = F.| chapter=Complete Version of Turan's Lemma for Trigonometric Polynomials on the Unit Circumference |author-link=Fedor Nazarov|title = Complex Analysis, Operators, and Related Topics|volume = 113|pages =239–246|year=2000|doi = 10.1007/978-3-0348-8378-8_20|isbn = 978-3-0348-9541-5}}
  • {{cite journal|last = Pólya|first = G.|author-link=George Pólya| title = Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete|journal = Sitzungsberichte Akad. Berlin|year = 1928|pages = 280–282}}

Category:Theorems in mathematical analysis

Category:Inequalities (mathematics)