Resistance distance
{{short description|Graph metric of electrical resistance between nodes}}
In graph theory, the resistance distance between two vertices of a simple, connected graph, {{mvar|G}}, is equal to the resistance between two equivalent points on an electrical network, constructed so as to correspond to {{mvar|G}}, with each edge being replaced by a resistance of one ohm. It is a metric on graphs.
Definition
On a graph {{mvar|G}}, the resistance distance {{math|Ω{{sub|i,j}}}} between two vertices {{mvar|v{{sub|i}}}} and {{mvar|v{{sub|j}}}} is{{Cite web|url=https://mathworld.wolfram.com/ResistanceDistance.html|title = Resistance Distance}}
:
\Omega_{i,j}:=\Gamma_{i,i}+\Gamma_{j,j}-\Gamma_{i,j}-\Gamma_{j,i},
:where
with {{math|{{sup|+}}}} denotes the Moore–Penrose inverse, {{mvar|L}} the Laplacian matrix of {{mvar|G}}, {{math|{{abs|V}}}} is the number of vertices in {{mvar|G}}, and {{math|Φ}} is the {{math|{{abs|V}} × {{abs|V}}}} matrix containing all 1s.
Properties of resistance distance
If {{math|1=i = j}} then {{math|1=Ω{{sub|i,j}} = 0}}. For an undirected graph
:
=General sum rule=
For any {{mvar|N}}-vertex simple connected graph {{math|1=G = (V, E)}} and arbitrary {{math|N×N}} matrix {{mvar|M}}:
:
From this generalized sum rule a number of relationships can be derived depending on the choice of {{mvar|M}}. Two of note are;
:
\sum_{(i,j) \in E}\Omega_{i,j} &= N - 1 \\
\sum_{i \end{align} where the {{mvar|λ{{sub|k}}}} are the non-zero eigenvalues of the Laplacian matrix. This unordered sum : is called the Kirchhoff index of the graph.
=Relationship to the number of spanning trees of a graph=
For a simple connected graph {{math|1=G = (V, E)}}, the resistance distance between two vertices may be expressed as a function of the set of spanning trees, {{mvar|T}}, of {{mvar|G}} as follows:
:
\Omega_{i,j}=\begin{cases}
\frac{\left | \{t:t \in T,\, e_{i,j} \in t\} \right \vert}{\left | T \right \vert}, & (i,j) \in E\\ \frac{\left | T'-T \right \vert}{\left | T \right \vert}, &(i,j) \not \in E
\end{cases}
where {{mvar|T'}} is the set of spanning trees for the graph {{math|1=G' = (V, E + e{{sub|i,j}})}}. In other words, for an edge , the resistance distance between a pair of nodes and is the probability that the edge is in a random spanning tree of .
=Relationship to random walks=
The resistance distance between vertices and is proportional to the commute time of a random walk between and . The commute time is the expected number of steps in a random walk that starts at , visits , and returns to . For a graph with edges, the resistance distance and commute time are related as .{{cite book |last1=Chandra, Ashok K and Raghavan, Prabhakar and Ruzzo, Walter L and Smolensky, Roman |title=Proceedings of the twenty-first annual ACM symposium on Theory of computing - STOC '89 |chapter=The electrical resistance of a graph captures its commute and cover times |date=1989 |issue=21 |pages=574–685 |doi=10.1145/73007.73062 |isbn=0897913078 |chapter-url=https://dl.acm.org/doi/abs/10.1145/73007.73062}}
Resistance distance is also related to the escape probability between two vertices. The escape probability between and is the probability that a random walk starting at visits before returning to . The escape probability equals
:
P_{u,v} = \frac{1}{\deg(u)\Omega_{u,v}},
where is the degree of .{{cite book |last1=Doyle |first1=Peter |last2=Snell |first2=J. Laurie |title=Random Walks and Electric Networks |date=1984 |publisher=American Mathematical Society |isbn=9781614440222}} Unlike the commute time, the escape probability is not symmetric in general, i.e., .
=As a squared Euclidean distance=
Since the Laplacian {{mvar|L}} is symmetric and positive semi-definite, so is
:
thus its pseudo-inverse {{math|Γ}} is also symmetric and positive semi-definite. Thus, there is a {{mvar|K}} such that and we can write:
:
showing that the square root of the resistance distance corresponds to the Euclidean distance in the space spanned by {{mvar|K}}.
=Connection with Fibonacci numbers =
A fan graph is a graph on {{math|n + 1}} vertices where there is an edge between vertex {{mvar|i}} and {{math|n + 1}} for all {{math|1=i = 1, 2, 3, …, n}}, and there is an edge between vertex {{mvar|i}} and {{mvar|i + 1}} for all {{math|1=i = 1, 2, 3, …, n – 1}}.
The resistance distance between vertex {{math|n + 1}} and vertex {{math|i ∈ {1, 2, 3, …, n} }} is
:
where {{mvar|F{{sub|j}}}} is the {{mvar|j}}-th Fibonacci number, for {{math|j ≥ 0}}.{{cite journal
| last1 = Bapat | first1 = R. B.
| last2 = Gupta | first2 = Somit
| doi = 10.1007/s13226-010-0004-2
| issue = 1
| journal = Indian Journal of Pure and Applied Mathematics
| mr = 2650096
| pages = 1–13
| title = Resistance distance in wheels and fans
| url = https://www.isid.ac.in/~rbb/somitnew.pdf
| volume = 41
| year = 2010}}
See also
References
{{Reflist}}
- {{cite journal
|first1= D. J.
|last1=Klein
|first2=M. J.
|last2=Randic
|journal=J. Math. Chem.
|doi=10.1007/BF01164627
|title=Resistance Distance
|volume=12
|pages=81–95
|year=1993
|s2cid=16382100
}}
- {{cite journal
|first1=Ivan
|last1=Gutman
|first2=Bojan
|last2=Mohar
|title=The quasi-Wiener and the Kirchhoff indices coincide
|year=1996
|journal=J. Chem. Inf. Comput. Sci.
|volume=36
|issue=5
|pages=982–985
|doi=10.1021/ci960007t
}}
- {{cite journal
|title=Closed-form formulas for the Kirchhoff index
|first1=Jose Luis
|last1=Palacios
|journal=Int. J. Quantum Chem.
|year=2001
|volume=81
|issue=2
|pages=135–140
|doi=10.1002/1097-461X(2001)81:2<135::AID-QUA4>3.0.CO;2-G
}}
- {{cite journal
|first1=D.
|last1=Babic
|first2=D. J.
|last2=Klein
|first3=I.
|last3=Lukovits
|first4=S.
|last4=Nikolic
|first5=N.
|last5=Trinajstic
|title=Resistance-distance matrix: a computational algorithm and its application
|journal=Int. J. Quantum Chem.
|year=2002
|doi=10.1002/qua.10057
|volume=90
|number=1
|pages=166–167
}}
- {{cite journal
|url = http://www.stkpula.hr/ccacaa/CCA-PDF/cca2002/v75-n2/CCA_75_2002_633_649_KLEIN.pdf
|journal = Croatica Chem. Acta
|last1 = Klein
|first1 = D. J.
|title = Resistance Distance Sum Rules
|year = 2002
|volume = 75
|number = 2
|pages = 633–649
|url-status = dead
|archiveurl = https://web.archive.org/web/20120326104653/http://www.stkpula.hr/ccacaa/CCA-PDF/cca2002/v75-n2/CCA_75_2002_633_649_KLEIN.pdf
|archivedate = 2012-03-26
}}
- {{cite journal
|first1=Ravindra B.
|last1=Bapat
|first2=Ivan
|last2=Gutman
|first3=Wenjun
|last3=Xiao
|title=A simple method for computing resistance distance
|journal=Z. Naturforsch.
|year=2003
|volume=58a
|issue=9–10
|pages=494–498
|url=http://www.znaturforsch.com/aa/v58a/c58a.htm#No9
|bibcode = 2003ZNatA..58..494B |doi = 10.1515/zna-2003-9-1003 |doi-access=free
}}
- {{cite journal
|first1=Jose Luis
|last1=Placios
|title=Foster's formulas via probability and the Kirchhoff index
|journal=Method. Comput. Appl. Probab.
|year=2004
|volume=6
|number=4
|pages=381–387
|doi=10.1023/B:MCAP.0000045086.76839.54
|s2cid=120309331
}}
- {{cite journal
|first1=Enrique
|last1=Bendito
|first2=Angeles
|last2=Carmona
|first3=Andres M.
|last3=Encinas
|first4=Jose M.
|last4=Gesto
|title=A formula for the Kirchhoff index
|journal=Int. J. Quantum Chem.
|year=2008
|doi=10.1002/qua.21588
|pages=1200–1206
|volume=108
|number=6
|bibcode = 2008IJQC..108.1200B }}
- {{cite journal
|journal=Int. J. Quantum Chem.
|first1=Bo
|last1=Zhou
|title=The Kirchhoff index and the matching number
|first2=Nenad
|last2=Trinajstic
|volume=109
|issue=13
|year=2009
|pages=2978–2981
|doi=10.1002/qua.21915
|bibcode = 2009IJQC..109.2978Z }}
- {{cite journal
|first1=Bo
|last1=Zhou
|first2=Nenad
|last2=Trinajstic
|title=On resistance-distance and the Kirchhoff index
|journal=J. Math. Chem.
|year=2009
|volume=46
|pages=283–289
|doi=10.1007/s10910-008-9459-3
|hdl=10338.dmlcz/140814
|s2cid=119389248
|hdl-access=free
}}
- {{cite journal
|first1=Bo
|last1=Zhou
|title=On sum of powers of Laplacian eigenvalues and Laplacian Estrada Index of graphs
|journal=Match Commun. Math. Comput. Chem
|volume=62
|pages=611–619
|arxiv=1102.1144
|year=2011
}}
- {{cite journal
|first1=Heping
|last1=Zhang
|first2=Yujun
|last2=Yang
|title=Resistance distance and Kirchhoff index in circulant graphs
|journal=Int. J. Quantum Chem.
|year=2007
|volume=107
|issue=2
|pages=330–339
|doi=10.1002/qua.21068
|bibcode = 2007IJQC..107..330Z }}
- {{cite journal
|first1=Yujun
|last1=Yang
|first2=Heping
|last2=Zhang
|title=Some rules on resistance distance with applications
|journal=J. Phys. A: Math. Theor.
|year=2008
|volume=41
|issue=44
|pages=445203
|doi=10.1088/1751-8113/41/44/445203
|bibcode = 2008JPhA...41R5203Y |s2cid=122226781
}}