Reynolds transport theorem
{{Short description|3D generalization of the Leibniz integral rule}}
{{Calculus|expanded=differential}}In differential calculus, the Reynolds transport theorem (also known as the Leibniz–Reynolds transport theorem), or simply the Reynolds theorem, named after Osborne Reynolds (1842–1912), is a three-dimensional generalization of the Leibniz integral rule. It is used to recast time derivatives of integrated quantities and is useful in formulating the basic equations of continuum mechanics.
Consider integrating {{math|1=f = f(x,t)}} over the time-dependent region {{math|Ω(t)}} that has boundary {{math|∂Ω(t)}}, then taking the derivative with respect to time:
If we wish to move the derivative into the integral, there are two issues: the time dependence of {{math|f}}, and the introduction of and removal of space from {{math|Ω}} due to its dynamic boundary. Reynolds transport theorem provides the necessary framework.
General form
Reynolds transport theorem can be expressed as follows:{{cite book |authorlink=L. Gary Leal |first=L. G. |last=Leal |year=2007 |title=Advanced transport phenomena: fluid mechanics and convective transport processes |publisher=Cambridge University Press |isbn=978-0-521-84910-4 |page=23 }}{{cite book |authorlink=Osborne Reynolds |first=O. |last=Reynolds |year=1903 |title=Papers on Mechanical and Physical Subjects |volume=3, The Sub-Mechanics of the Universe |publisher=Cambridge University Press |location=Cambridge |pages=12–13 }}{{cite book |authorlink=Jerrold E. Marsden |first=J. E. |last=Marsden |authorlink2=Anthony Tromba |first2=A. |last2=Tromba |year=2003 |title=Vector Calculus |edition=5th |publisher=W. H. Freeman |location=New York |isbn=978-0-7167-4992-9 }}
in which {{math|n(x,t)}} is the outward-pointing unit normal vector, {{math|x}} is a point in the region and is the variable of integration, {{math|dV}} and {{math|dA}} are volume and surface elements at {{math|x}}, and {{math|vb(x,t)}} is the velocity of the area element (not the flow velocity). The function {{math|f}} may be tensor-, vector- or scalar-valued.{{cite book |first=H. |last=Yamaguchi |title=Engineering Fluid Mechanics |location=Dordrecht |publisher=Springer |year=2008 |page=23 |isbn=978-1-4020-6741-9 }} Note that the integral on the left hand side is a function solely of time, and so the total derivative has been used.
Form for a material element
In continuum mechanics, this theorem is often used for material elements. These are parcels of fluids or solids which no material enters or leaves. If {{math|Ω(t)}} is a material element then there is a velocity function {{math|1=v = v(x,t)}}, and the boundary elements obey
This condition may be substituted to obtain:{{cite book |authorlink=Ted Belytschko |first=T. |last=Belytschko |first2=W. K. |last2=Liu |first3=B. |last3=Moran |year=2000 |title=Nonlinear Finite Elements for Continua and Structures |publisher=John Wiley and Sons |location=New York |isbn=0-471-98773-5 }}
{{math proof| title = Proof for a material element | proof =
Let {{math|Ω0}} be reference configuration of the region {{math|Ω(t)}}. Let
the motion and the deformation gradient be given by
Let {{math|1=J(X,t) = det F(X,t)}}. Define
Then the integrals in the current and the reference configurations are related by
\int_{\Omega(t)} \mathbf{f}(\mathbf{x},t)\,dV
= \int_{\Omega_0} \mathbf{f}(\boldsymbol{\varphi}(\mathbf{X},t),t) \, J(\mathbf{X},t) \,dV_0
= \int_{\Omega_0} \hat{\mathbf{f}}(\mathbf{X},t) \, J(\mathbf{X},t) \, dV_0.
That this derivation is for a material element is implicit in the time constancy of the reference configuration: it is constant in material coordinates. The time derivative of an integral over a volume is defined as
Converting into integrals over the reference configuration, we get
\lim_{\Delta t \to 0} \frac{1}{\Delta t} \left(\int_{\Omega_0} \hat{\mathbf{f}}(\mathbf{X},t+\Delta t)\, J(\mathbf{X},t+\Delta t)\,dV_0 - \int_{\Omega_0} \hat{\mathbf{f}}(\mathbf{X},t)\, J(\mathbf{X},t)\, dV_0\right).
Since {{math|Ω0}} is independent of time, we have
\frac{d}{dt}\left( \int_{\Omega(t)} \mathbf{f}(\mathbf{x},t)\,dV\right)
&= \int_{\Omega_0} \left(\lim_{\Delta t \to 0} \frac{ \hat{\mathbf{f}}(\mathbf{X},t+\Delta t)\, J(\mathbf{X},t+\Delta t) - \hat{\mathbf{f}}(\mathbf{X},t)\, J(\mathbf{X},t)}{\Delta t} \right)\,dV_0 \\
&= \int_{\Omega_0} \frac{\partial}{\partial t}\left(\hat{\mathbf{f}}(\mathbf{X},t)\, J(\mathbf{X},t)\right)\,dV_0 \\
&= \int_{\Omega_0} \left( \frac{\partial}{\partial t}\big(\hat{\mathbf{f}}(\mathbf{X},t)\big)\, J(\mathbf{X},t)+ \hat{\mathbf{f}}(\mathbf{X},t)\,\frac{\partial}{\partial t}\big(J(\mathbf{X},t)\big)\right) \,dV_0.
\end{align}
The time derivative of {{mvar|J}} is given by:{{cite book |authorlink=Morton Gurtin |last=Gurtin |first=M. E. |year=1981 |title=An Introduction to Continuum Mechanics |publisher=Academic Press |location=New York |page=77 |isbn=0-12-309750-9 }}
\frac{\partial J(\mathbf{X},t)}{\partial t} &= \frac{\partial}{\partial t}(\det\boldsymbol{F}) \\
&= (\det\boldsymbol{F}) \operatorname{tr}\left(\boldsymbol{F}^{-1} \frac{\partial\boldsymbol F}{\partial t}\right)\\
&= (\det\boldsymbol{F}) \operatorname{tr}\left(\frac{\partial \boldsymbol{X}}{\partial \boldsymbol{\varphi}} \frac{\partial}{\partial t}\left(\frac{\partial\boldsymbol{\varphi}}{\partial\boldsymbol{X}}\right)\right)\\
&= (\det\boldsymbol{F}) \operatorname{tr}\left(\frac{\partial \boldsymbol{X}}{\partial \boldsymbol{\varphi}} \frac{\partial}{\partial \boldsymbol{X}}\left(\frac{\partial\boldsymbol{\varphi}}{\partial t}\right)\right) \\
&= (\det\boldsymbol{F}) \operatorname{tr}\left( \frac{\partial}{\partial \boldsymbol{x}}\left(\frac{\partial\boldsymbol{\varphi}}{\partial t}\right)\right) \\
&= (\det\boldsymbol{F})(\boldsymbol{\nabla} \cdot \mathbf{v}) \\
&= J(\mathbf{X},t)\,\boldsymbol{\nabla} \cdot \mathbf{v}\big(\boldsymbol{\varphi}(\mathbf{X},t),t\big) \\
&= J(\mathbf{X},t)\,\boldsymbol{\nabla} \cdot \mathbf{v}(\mathbf{x},t). \end{align}
Therefore,
\frac{d}{dt}\left( \int_{\Omega(t)} \mathbf{f}(\mathbf{x},t)\,dV\right)
&= \int_{\Omega_0} \left( \frac{\partial}{\partial t}\left(\hat{\mathbf{f}}(\mathbf{X},t)\right)\,J(\mathbf{X},t)+ \hat{\mathbf{f}}(\mathbf{X},t)\,J(\mathbf{X},t)\,\boldsymbol{\nabla} \cdot \mathbf{v}(\mathbf{x},t)\right) \,dV_0 \\
&= \int_{\Omega_0} \left(\frac{\partial}{\partial t}\left(\hat{\mathbf{f}}(\mathbf{X},t)\right)+ \hat{\mathbf{f}}(\mathbf{X},t)\,\boldsymbol{\nabla} \cdot \mathbf{v}(\mathbf{x},t)\right)\,J(\mathbf{X},t) \,dV_0 \\
&= \int_{\Omega(t)} \left(\dot{\mathbf{f}}(\mathbf{x},t)+ \mathbf{f}(\mathbf{x},t)\,\boldsymbol{\nabla} \cdot \mathbf{v}(\mathbf{x},t)\right)\,dV.
\end{align}
where is the material time derivative of {{math|f}}. The material derivative is given by
Therefore,
\int_{\Omega(t)} \left( \frac{\partial \mathbf{f}(\mathbf{x},t)}{\partial t} + \big(\boldsymbol{\nabla} \mathbf{f}(\mathbf{x},t)\big) \cdot\mathbf{v}(\mathbf{x},t) + \mathbf{f}(\mathbf{x},t)\,\boldsymbol{\nabla} \cdot \mathbf{v}(\mathbf{x},t) \right) \,dV,
or,
= \int_{\Omega(t)} \left( \frac{\partial \mathbf{f}}{\partial t} + \boldsymbol{\nabla} \mathbf{f}\cdot\mathbf{v} + \mathbf{f}\,\boldsymbol{\nabla} \cdot \mathbf{v}\right)\,dV.
Using the identity
we then have
= \int_{\Omega(t)} \left(\frac{\partial \mathbf{f}}{\partial t} + \boldsymbol{\nabla} \cdot (\mathbf{f}\otimes\mathbf{v})\right)\,dV.
Using the divergence theorem and the identity {{math|1=(a ⊗ b) · n = (b · n)a}}, we have
\frac{d}{dt}\left( \int_{\Omega(t)} \mathbf{f}\,dV\right)
&= \int_{\Omega(t)}\frac{\partial \mathbf{f}}{\partial t}\,dV + \int_{\partial \Omega(t)}(\mathbf{f}\otimes\mathbf{v})\cdot\mathbf{n}\,dA \\
&= \int_{\Omega(t)}\frac{\partial \mathbf{f}}{\partial t}\,dV + \int_{\partial \Omega(t)}(\mathbf{v}\cdot\mathbf{n})\mathbf{f}\,dA.
\end{align}
}}
A special case
If we take {{math|Ω}} to be constant with respect to time, then {{math|vb {{=}} 0}} and the identity reduces to
as expected. (This simplification is not possible if the flow velocity is incorrectly used in place of the velocity of an area element.)
= Interpretation and reduction to one dimension =
The theorem is the higher-dimensional extension of differentiation under the integral sign and reduces to that expression in some cases. Suppose {{mvar|f}} is independent of {{mvar|y}} and {{mvar|z}}, and that {{math|Ω(t)}} is a unit square in the {{mvar|yz}}-plane and has {{mvar|x}} limits {{math|a(t)}} and {{math|b(t)}}. Then Reynolds transport theorem reduces to
which, up to swapping {{mvar|x}} and {{mvar|t}}, is the standard expression for differentiation under the integral sign.
See also
{{Portal|Mathematics}}
- {{annotated link|Leibniz integral rule}}
{{clear}}
References
{{Reflist}}
External links
- Osborne Reynolds, Collected Papers on Mechanical and Physical Subjects, in three volumes, published circa 1903, now fully and freely available in digital format: [https://archive.org/details/papersonmechanic01reynrich Volume 1], [https://archive.org/details/papersonmechanic02reynrich Volume 2], [https://archive.org/details/papersonmechanic03reynrich Volume 3],
- {{cite web |title=Module 6 - Reynolds Transport Theorem |work=ME6601: Introduction to Fluid Mechanics |publisher=Georgia Tech |url=http://www.catea.org/grade/mecheng/mod6/mod6.html#slide1 |archivedate=March 27, 2008 |archiveurl=https://web.archive.org/web/20080327180821/http://www.catea.org/grade/mecheng/mod6/mod6.html#slide1 }}
- {{Cite web |title=Reynolds transport theorem |url=https://planetmath.org/reynoldstransporttheorem |access-date=2024-04-22 |website=planetmath.org}}
Category:Articles containing proofs
Category:Eponymous theorems of physics