Ribbon Hopf algebra

{{Short description|Algebraic structure}}

A ribbon Hopf algebra (A,\nabla, \eta,\Delta,\varepsilon,S,\mathcal{R},\nu) is a quasitriangular Hopf algebra which possess an invertible central element \nu more commonly known as the ribbon element, such that the following conditions hold:

:\nu^{2}=uS(u), \; S(\nu)=\nu, \; \varepsilon (\nu)=1

:\Delta (\nu)=(\mathcal{R}_{21}\mathcal{R}_{12})^{-1}(\nu \otimes \nu )

where u=\nabla(S\otimes \text{id})(\mathcal{R}_{21}). Note that the element u exists for any quasitriangular Hopf algebra, and

uS(u) must always be central and satisfies S(uS(u))=uS(u), \varepsilon(uS(u))=1, \Delta(uS(u)) =

(\mathcal{R}_{21}\mathcal{R}_{12})^{-2}(uS(u) \otimes uS(u)), so that all that is required is that it have a central square root with the above properties.

Here

: A is a vector space

: \nabla is the multiplication map \nabla:A \otimes A \rightarrow A

: \Delta is the co-product map \Delta: A \rightarrow A \otimes A

: \eta is the unit operator \eta:\mathbb{C} \rightarrow A

: \varepsilon is the co-unit operator \varepsilon: A \rightarrow \mathbb{C}

: S is the antipode S: A\rightarrow A

:\mathcal{R} is a universal R matrix

We assume that the underlying field K is \mathbb{C}

If A is finite-dimensional, one could equivalently call it ribbon Hopf if and only if its category of (say, left) modules is ribbon; if A is finite-dimensional and quasi-triangular, then it is ribbon if and only if its category of (say, left) modules is pivotal.

See also

References

  • {{cite journal |last1=Altschuler |first1=D. |last2=Coste |first2=A. |title=Quasi-quantum groups, knots, three-manifolds and topological field theory |journal=Commun. Math. Phys. |volume=150 |year=1992 |issue=1 |pages=83–107 |arxiv=hep-th/9202047 |doi=10.1007/bf02096567|bibcode=1992CMaPh.150...83A }}
  • {{cite book |last1=Chari |first1=V. C. |last2=Pressley |first2=A. |title=A Guide to Quantum Groups |url=https://archive.org/details/guidetoquantumgr0000char |url-access=registration |publisher=Cambridge University Press |year=1994 |isbn=0-521-55884-0 }}
  • {{cite journal |author-link=Vladimir Drinfeld |first=Vladimir |last=Drinfeld |title=Quasi-Hopf algebras |journal=Leningrad Math J. |volume=1 |year=1989 |pages=1419–1457 }}
  • {{cite book |first=Shahn |last=Majid |title=Foundations of Quantum Group Theory |publisher=Cambridge University Press |year=1995 }}

Category:Hopf algebras