Right conoid

{{Short description|Ruled surface made of lines orthogonal to an axis}}

{{inline |date=May 2024}}

Image:Right concoid.svg as a ruled surface.]]

In geometry, a right conoid is a ruled surface generated by a family of straight lines that all intersect perpendicularly to a fixed straight line, called the axis of the right conoid.

Using a Cartesian coordinate system in three-dimensional space, if we take the {{nowrap|{{mvar|z}}-axis}} to be the axis of a right conoid, then the right conoid can be represented by the parametric equations:

:x=v\cos u

:y=v\sin u

:z=h(u)

where {{math|h(u)}} is some function for representing the height of the moving line.

Examples

Image:Conoid.gif

A typical example of right conoids is given by the parametric equations

: x=v\cos u, y=v\sin u, z=2\sin u

The image on the right shows how the coplanar lines generate the right conoid.

Other right conoids include:

See also