Rivlin–Ericksen tensor

{{Short description|Concept in physics}}

A Rivlin–Ericksen temporal evolution of the strain rate tensor such that the derivative translates and rotates with the flow field. The first-order Rivlin–Ericksen is given by

:\mathbf{A}_{ij(1)}= \frac{\partial v_i}{\partial x_j}+\frac{\partial v_j}{\partial x_i}

where

:v_i is the fluid's velocity and

:A_{ij(n)} is n-th order Rivlin–Ericksen tensor.

Higher-order tensor may be found iteratively by the expression

: A_{ij(n+1)}=\frac{\mathcal{D}}{\mathcal{D}t}A_{ij(n)}.

The derivative chosen for this expression depends on convention. The upper-convected time derivative, lower-convected time derivative, and Jaumann derivative are often used.

References

  • {{cite book |author1=Truesdell, Clifford |author2=Noll, Walter |name-list-style=amp | title=The Non-Linear Field Theories of Mechanics | publisher=Springer | year=2004 | isbn= 978-3-662-10388-3}}

{{DEFAULTSORT:Rivlin-Ericksen tensor}}

Category:Multivariable calculus

Category:Fluid dynamics

Category:Non-Newtonian fluids