Roman Dziarski
{{Short description|American scientist (born 1949)}}
{{Infobox scientist
| name = Roman Dziarski
| image = Roman Dziarski-2017.jpg
| caption = Dziarski in 2017
| nationality = American
| alma_mater = University of Warsaw, Poland (BS, MS)
National Institute of Public Health, Warsaw, Poland (PhD)
| occupation = Scientist
| known_for = Research on peptidoglycan recognition proteins, innate immunity, and peptidoglycan
| title = Professor Emeritus of Microbiology and Immunology
| birth_date = {{birth-date and age|December 11, 1949}}
| birth_place = Warsaw, Poland
| fields = Immunology, microbiology
| work_institutions = Indiana University School of Medicine
}}
Roman Dziarski (Polish pronunciation: IPA: /ˈrɔ.man//ˈd͡ʑar.ski/ born December 11, 1949) is a Polish-born American immunologist and microbiologist.{{Cite web|title=Roman Dziarski|url=https://www.poles.org/db/D_names/Dziarski_R.html|url-status=}}{{ Unreliable source? | date = August 2023 }}{{Cite web|title=Roman Dziarski, PhD|url=https://medicine.iu.edu/faculty/26537/dziarski-roman|url-status=}} He is best known for his research on innate immunity{{Cite book|url=https://www.worldcat.org/oclc/1266208905|title=Schaechter's mechanisms of microbial disease|date=2022|others=N. Cary Engleberg, Victor J. DiRita, Michael Joseph Imperiale|isbn=978-1-9751-5150-8|edition=Sixth|location=Philadelphia|pages=61–86|oclc=1266208905}} and bacterial peptidoglycan,{{Citation|last1=Rosenthal|first1=Raoul S.|title=Bacterial Pathogenesis Part A: Identification and Regulation of Virulence Factors|date=1994|url=https://linkinghub.elsevier.com/retrieve/pii/0076687994351465|series=Methods in Enzymology|volume=235|pages=253–285|publisher=Elsevier|language=en|doi=10.1016/0076-6879(94)35146-5|isbn=978-0-12-182136-4|access-date=2022-02-01|last2=Dziarski|first2=Roman|chapter=Isolation of peptidoglycan and soluble peptidoglycan fragments |pmid=8057899|url-access=subscription}}{{Cite book|url=https://www.worldcat.org/oclc/162129494|title=Molecular medical microbiology|date=2002|publisher=Academic Press|others=Max Sussman|isbn=978-0-12-677530-3|location=San Diego|pages=137–154|oclc=162129494}} for discovering the family of human peptidoglycan recognition proteins,{{Cite journal|last1=Liu|first1=C.|last2=Xu|first2=Z.|last3=Gupta|first3=D.|last4=Dziarski|first4=R.|date=2001-09-14|title=Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules|journal=The Journal of Biological Chemistry|volume=276|issue=37|pages=34686–34694|doi=10.1074/jbc.M105566200|issn=0021-9258|pmid=11461926|doi-access=free}}{{Cite journal|last1=Dziarski|first1=Roman|last2=Gupta|first2=Dipika|date=2006|title=The peptidoglycan recognition proteins (PGRPs)|journal=Genome Biology|volume=7|issue=8|pages=232|doi=10.1186/gb-2006-7-8-232|issn=1465-6906|pmc=1779587|pmid=16930467 |doi-access=free }}{{Citation|last1=Dziarski|first1=Roman|title=Peptidoglycan Recognition Proteins and Lysozyme|date=2016|url=https://linkinghub.elsevier.com/retrieve/pii/B9780123742797020221|encyclopedia=Encyclopedia of Immunobiology|pages=389–403|publisher=Elsevier|language=en|doi=10.1016/b978-0-12-374279-7.02022-1|isbn=978-0-08-092152-5|access-date=2022-02-01|last2=Royet|first2=Julien|last3=Gupta|first3=Dipika|url-access=subscription}} which comprises PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4, and for defining the functions of these proteins.{{Cite journal|last1=Royet|first1=Julien|last2=Dziarski|first2=Roman|date=Apr 2007|title=Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences|url=https://pubmed.ncbi.nlm.nih.gov/17363965|journal=Nature Reviews. Microbiology|volume=5|issue=4|pages=264–277|doi=10.1038/nrmicro1620|issn=1740-1534|pmid=17363965|s2cid=39569790}}{{Cite journal|last1=Royet|first1=Julien|last2=Gupta|first2=Dipika|last3=Dziarski|first3=Roman|date=2011-11-11|title=Peptidoglycan recognition proteins: modulators of the microbiome and inflammation|url=https://pubmed.ncbi.nlm.nih.gov/22076558|journal=Nature Reviews. Immunology|volume=11|issue=12|pages=837–851|doi=10.1038/nri3089|issn=1474-1741|pmid=22076558|s2cid=5266193}}{{Cite journal|last1=Dziarski|first1=Roman|last2=Gupta|first2=Dipika|date=Feb 2018|title=How innate immunity proteins kill bacteria and why they are not prone to resistance|journal=Current Genetics|volume=64|issue=1|pages=125–129|doi=10.1007/s00294-017-0737-0|issn=1432-0983|pmc=5777906|pmid=28840318}}
Dziarski is currently Professor Emeritus of Microbiology and Immunology at Indiana University School of Medicine.
Education
From 1963 to 1967, Dziarski received his secondary education at Reytan High School (Polish: VI Liceum Ogólnokształcące im. Tadeusza Reytana){{Cite web|title=VI Liceum Ogólnokształcące im. Tadeusza Reytana w Warszawie|url=http://reytan.edu.pl/|url-status=}} in Warsaw, Poland, under the tutelage of the revered pedagogue, {{ill|Ireneusz Gugulski|pl}}. From 1967 to 1972, Dziarski attended the University of Warsaw with a major in Biology and Microbiology, which he studied under {{ill|Władysław Kunicki-Goldfinger|pl}}. He received his Bachelor of Sciences (BS) degree in 1971, and Master of Science (MS) degree in 1972. His MS Thesis was titled, Phenotypic expression of spontaneous mutations to nalidixic acid resistance in Escherichia coli K-12, with Roman Mycielski as his thesis advisor. From 1972 to 1973, Dziarski studied English at West London College in London, England. From 1973 to 1977, Dziarski was a Research Scientist in the Department of Bacteriology at the National Institute of Public Health (Polish: Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny), Warsaw, Poland, where he performed research for his Doctor of Philosophy (Ph.D.) degree, which culminated in 1977 with the defense of his Ph.D. thesis, titled, Immunobiological properties of Staphylococcus aureus cell wall polysaccharides, with Janusz Jeljaszewicz as his thesis advisor. In September 1977, Dziarski emigrated to the USA.
Academic positions
In 1977, Dziarski joined the Department of Microbiology, Immunology and Pathology at Temple University School of Podiatric Medicine in Philadelphia, Pennsylvania, USA, as a research associate and assistant professor. In 1978, he was promoted to assistant professor and in 1981 to associate professor. In 1985, Dziarski moved to the Department of Microbiology and Immunology at Indiana University School of Medicine–Northwest, in Gary, Indiana, USA, as an associate professor and a full member of the Indiana University Graduate School, in Bloomington, Indiana, USA. In 1991, Dziarski was promoted to a Full Professor of Microbiology and Immunology with tenure. He held this position until his retirement in 2021, when he became Professor Emeritus of Microbiology and Immunology.
Scientific contributions
= Role of peptidoglycan in innate immunity =
In his early research, Dziarski focused on the role of bacterial peptidoglycan in innate immunity. He showed that peptidoglycan is an immunomodulator{{Cite journal|last=Dziarski|first=R.|date=1978|title=Immunosuppressive effect of Staphylococcus aureus peptidoglycan on antibody response in mice|url=https://pubmed.ncbi.nlm.nih.gov/659018|journal=International Archives of Allergy and Applied Immunology|volume=57|issue=4|pages=304–311|doi=10.1159/000232119|issn=0020-5915|pmid=659018}}{{Cite journal|last=Dziarski|first=R.|date= Sep 1979|title=Splenic macrophages: mediators of immunosuppressive activity of staphylococcal peptidoglycan|url=https://pubmed.ncbi.nlm.nih.gov/501708|journal=Journal of the Reticuloendothelial Society|volume=26|issue=3|pages=239–247|issn=0033-6890|pmid=501708}}{{Cite journal|last=Dziarski|first=R.|date= Nov 1979|title=Relationships between adjuvant, immunosuppressive, and mitogenic activities of staphylococcal peptidoglycan|journal=Infection and Immunity|volume=26|issue=2|pages=508–514|doi=10.1128/iai.26.2.508-514.1979|issn=0019-9567|pmc=414645|pmid=317594}} and a polyclonal activator of B lymphocytes.{{Cite journal|last1=Dziarski|first1=R.|last2=Dziarski|first2=A.|date=Mar 1979|title=Mitogenic activity of staphylococcal peptidoglycan|journal=Infection and Immunity|volume=23|issue=3|pages=706–710|doi=10.1128/iai.23.3.706-710.1979|issn=0019-9567|pmc=414223|pmid=313370}}{{Cite journal|last=Dziarski|first=R.|date=Nov 1980|title=Modulation of mitogenic responsiveness by staphylococcal peptidoglycan|journal=Infection and Immunity|volume=30|issue=2|pages=431–438|doi=10.1128/iai.30.2.431-438.1980|issn=0019-9567|pmc=551331|pmid=7439988}}{{Cite journal|last1=Dziarski|first1=R.|last2=Dziarski|first2=A.|last3=Levinson|first3=A. I.|date=1980|title=Mitogenic responsiveness of mouse, rat and human lymphocytes to Staphylococcus aureus cell wall, teichoic acid, and peptidoglycan|url=https://pubmed.ncbi.nlm.nih.gov/7429652|journal=International Archives of Allergy and Applied Immunology|volume=63|issue=4|pages=383–395|doi=10.1159/000232654|issn=0020-5915|pmid=7429652}}{{Cite journal|last=Dziarski|first=R.|date=Dec 1980|title=Polyclonal activation of immunoglobulin secretion in B lymphocytes induced by staphylococcal peptidoglycan|journal=Journal of Immunology|volume=125|issue=6|pages=2478–2483|doi=10.4049/jimmunol.125.6.2478 |issn=0022-1767|pmid=6968784|s2cid=10056237 |doi-access=free}}{{Cite journal|last=Dziarski|first=R.|date=Feb 1982|title=Studies on the mechanism of peptidoglycan- and lipopolysaccharide-induced polyclonal activation|journal=Infection and Immunity|volume=35|issue=2|pages=507–514|doi=10.1128/iai.35.2.507-514.1982|issn=0019-9567|pmc=351069|pmid=6460001}}{{Cite journal|last1=Levinson|first1=A. I.|last2=Dziarski|first2=A.|last3=Zweiman|first3=B.|last4=Dziarski|first4=R.|date=Jan 1983|title=Staphylococcal peptidoglycan: T-cell-dependent mitogen and relatively T-cell-independent polyclonal B-cell activator of human lymphocytes|journal=Infection and Immunity|volume=39|issue=1|pages=290–296|doi=10.1128/iai.39.1.290-296.1983|issn=0019-9567|pmc=347939|pmid=6600446}} He determined the role of DNA synthesis, intracellular calcium, protein kinase C, and inhibitory G proteins in peptidoglycan-induced polyclonal B lymphocyte activation.{{Cite journal|last=Dziarski|first=R.|date=1985|title=The role of DNA synthesis in peptidoglycan-induced generation of immunoglobulin-secreting cells in mice and humans|url=https://pubmed.ncbi.nlm.nih.gov/4039298|journal=Immunology Letters|volume=9|issue=2–3|pages=161–165|doi=10.1016/0165-2478(85)90028-8|issn=0165-2478|pmid=4039298}}{{Cite journal|last=Dziarski|first=R.|date=Jan 1988|title=Enhancement of B-cell stimulation by muramyl dipeptide through a mechanism not involving interleukin 1 or increased Ca2+ mobilization or protein kinase C activation|url=https://pubmed.ncbi.nlm.nih.gov/2448043|journal=Cellular Immunology|volume=111|issue=1|pages=10–27|doi=10.1016/0008-8749(88)90047-0|issn=0008-8749|pmid=2448043}}{{Cite journal|last=Dziarski|first=R.|date=Jan 1989|title=Correlation between ribosylation of pertussis toxin substrates and inhibition of peptidoglycan-, muramyl dipeptide- and lipopolysaccharide-induced mitogenic stimulation in B lymphocytes|url=https://pubmed.ncbi.nlm.nih.gov/2537732|journal=European Journal of Immunology|volume=19|issue=1|pages=125–130|doi=10.1002/eji.1830190120|issn=0014-2980|pmid=2537732|s2cid=25447041}}{{Cite book|url=https://www.worldcat.org/oclc/1167631600|title=Biological Properties of Peptidoglycan : Proceedings Second International Workshop, Munich, Federal Republic of Germany, May 20-21, 1985|date=2019|others=Karl H. Schleifer, Peter H. Seidl|isbn=978-3-11-087429-7|edition=Reprint 2019|location=Berlin|pages=229–247|oclc=1167631600}} He also established the role of peptidoglycan and other polyclonal B cell activators in the induction of autoantibody responses in various models of autoimmunity.{{Cite journal|last=Dziarski|first=R.|date=Mar 1982|title=Preferential induction of autoantibody secretion in polyclonal activation by peptidoglycan and lipopolysaccharide. I. In vitro studies|journal=Journal of Immunology|volume=128|issue=3|pages=1018–1025|doi=10.4049/jimmunol.128.3.1018 |issn=0022-1767|pmid=7035553|s2cid=6804886 |doi-access=free}}{{Cite journal|last=Dziarski|first=R.|date=Mar 1982|title=Preferential induction of autoantibody secretion in polyclonal activation by peptidoglycan and lipopolysaccharide. II. In vivo studies|journal=Journal of Immunology|volume=128|issue=3|pages=1026–1030|doi=10.4049/jimmunol.128.3.1026 |issn=0022-1767|pmid=7035554|s2cid=41066567 |doi-access=free}}{{Cite journal|last=Dziarski|first=R.|date=Nov 1984|title=Anti-immunoglobulin autoantibodies are not preferentially induced in polyclonal activation of human and mouse lymphocytes, and more anti-DNA and anti-erythrocyte autoantibodies are induced in polyclonal activation of mouse than human lymphocytes|journal=Journal of Immunology|volume=133|issue=5|pages=2537–2544|doi=10.4049/jimmunol.133.5.2537 |issn=0022-1767|pmid=6207235|s2cid=21332031 |doi-access=free}}{{Cite journal|last=Dziarski|first=R.|date=Nov 1984|title=Opposing effects of xid and nu mutations on proliferative and polyclonal antibody and autoantibody responses to peptidoglycan, LPS, protein A and PWM|journal=Immunology|volume=53|issue=3|pages=563–574|issn=0019-2805|pmc=1454924|pmid=6436173}}{{Cite journal|last=Dziarski|first=R.|date=Feb 1985|title=Comparison of in vitro and in vivo mitogenic and polyclonal antibody and autoantibody responses to peptidoglycan, LPS, protein A, PWM, PHA and Con A in normal and autoimmune mice|url=https://pubmed.ncbi.nlm.nih.gov/3886911|journal=Journal of Clinical & Laboratory Immunology|volume=16|issue=2|pages=93–109|issn=0141-2760|pmid=3886911}}{{Cite journal|last=Dziarski|first=R.|date=1985|title=Ontogenic development of proliferative and polyclonal antibody and autoantibody responses to staphylococcal peptidoglycan, protein A and cell walls in mice|url=https://pubmed.ncbi.nlm.nih.gov/4039689|journal=Developmental and Comparative Immunology|volume=9|issue=1|pages=119–130|doi=10.1016/0145-305x(85)90065-5|issn=0145-305X|pmid=4039689}}{{Cite journal|last=Dziarski|first=Roman|date=Jun 1985|title=Polyclonal B-cell activation in SLE: Frequencies of autoantibody secreting cells|url=https://linkinghub.elsevier.com/retrieve/pii/S0197185985800273|journal=Clinical Immunology Newsletter|language=en|volume=6|issue=6|pages=89–93|doi=10.1016/S0197-1859(85)80027-3|url-access=subscription}}{{Cite journal|last=Dziarski|first=R.|date=1987|title=Letters Natural autoantibodies might prevent autoimmune disease|url=https://pubmed.ncbi.nlm.nih.gov/25290022|journal=Immunology Today|volume=8|issue=5|pages=132|doi=10.1016/0167-5699(87)90138-1|issn=0167-5699|pmid=25290022}}{{Cite journal|last=Dziarski|first=R.|date=Nov 1988|title=Autoimmunity: polyclonal activation or antigen induction?|url=https://pubmed.ncbi.nlm.nih.gov/3076403|journal=Immunology Today|volume=9|issue=11|pages=340–342|doi=10.1016/0167-5699(88)91333-3|issn=0167-5699|pmid=3076403}}
= Peptidoglycan receptors and cell activation pathways =
In his subsequent research, Dziarski set out to identify peptidoglycan receptors on immune cells that mediate the cell-activating and immunomodulating effects of peptidoglycan. His early attempts using biochemical methods were not successful, as they were prone to nonspecific interactions and technical artifacts.{{Cite journal|last=Dziarski|first=R.|date=1987-10-01|title=Binding sites for peptidoglycan on mouse lymphocytes|url=https://pubmed.ncbi.nlm.nih.gov/2820589|journal=Cellular Immunology|volume=109|issue=1|pages=231–245|doi=10.1016/0008-8749(87)90307-8|issn=0008-8749|pmid=2820589}}{{Cite journal|last=Dziarski|first=R.|date=1991-03-15|title=Demonstration of peptidoglycan-binding sites on lymphocytes and macrophages by photoaffinity cross-linking|journal=The Journal of Biological Chemistry|volume=266|issue=8|pages=4713–4718|doi=10.1016/S0021-9258(19)67707-0|issn=0021-9258|pmid=2002020|doi-access=free}}{{Cite journal|last=Dziarski|first=R.|date=1991-03-15|title=Peptidoglycan and lipopolysaccharide bind to the same binding site on lymphocytes|journal=The Journal of Biological Chemistry|volume=266|issue=8|pages=4719–4725|doi=10.1016/S0021-9258(19)67708-2|issn=0021-9258|pmid=2002021|doi-access=free}}{{Cite journal|last1=Dziarski|first1=R.|last2=Gupta|first2=D.|date=1994-01-21|title=Heparin, sulfated heparinoids, and lipoteichoic acids bind to the 70-kDa peptidoglycan/lipopolysaccharide receptor protein on lymphocytes|journal=The Journal of Biological Chemistry|volume=269|issue=3|pages=2100–2110|doi=10.1016/S0021-9258(17)42141-7|issn=0021-9258|pmid=8294463|doi-access=free}}{{Cite journal|last=Dziarski|first=R.|date=1994-08-12|title=Cell-bound albumin is the 70-kDa peptidoglycan-, lipopolysaccharide-, and lipoteichoic acid-binding protein on lymphocytes and macrophages|journal=The Journal of Biological Chemistry|volume=269|issue=32|pages=20431–20436|doi=10.1016/S0021-9258(17)32010-0|issn=0021-9258|pmid=8051139|doi-access=free}} He also showed that similar problems and artifacts plagued the early attempts to identify the cell receptors for bacterial lipopolysaccharide and other cell activators.
The molecular biology approach to identifying the cell-activating peptidoglycan receptors was more successful. Using this approach, Dziarski and his research group, in collaboration with Dipika Gupta and her group (also at Indiana University School of Medicine), identified CD14 as the cell-activating receptor for peptidoglycan and showed that CD14 physically binds peptidoglycan.{{Cite journal|last1=Gupta|first1=D.|last2=Kirkland|first2=T. N.|last3=Viriyakosol|first3=S.|last4=Dziarski|first4=R.|date=1996-09-20|title=CD14 is a cell-activating receptor for bacterial peptidoglycan|journal=The Journal of Biological Chemistry|volume=271|issue=38|pages=23310–23316|doi=10.1074/jbc.271.38.23310|issn=0021-9258|pmid=8798531|doi-access=free}}{{Cite journal|last1=Dziarski|first1=R.|last2=Tapping|first2=R. I.|last3=Tobias|first3=P. S.|date=1998-04-10|title=Binding of bacterial peptidoglycan to CD14|journal=The Journal of Biological Chemistry|volume=273|issue=15|pages=8680–8690|doi=10.1074/jbc.273.15.8680|issn=0021-9258|pmid=9535844|doi-access=free}}{{Cite journal|last1=Jin|first1=Y.|last2=Gupta|first2=D.|last3=Dziarski|first3=R.|date=Jun 1998|title=Endothelial and epithelial cells do not respond to complexes of peptidoglycan with soluble CD14 but are activated indirectly by peptidoglycan-induced tumor necrosis factor-alpha and interleukin-1 from monocytes|journal=The Journal of Infectious Diseases|volume=177|issue=6|pages=1629–1638|doi=10.1086/515318|issn=0022-1899|pmid=9607843|s2cid=42163402 |doi-access=free}}{{Cite journal|last1=Dziarski|first1=R.|last2=Viriyakosol|first2=S.|last3=Kirkland|first3=T. N.|last4=Gupta|first4=D.|date=Sep 2000|title=Soluble CD14 enhances membrane CD14-mediated responses to peptidoglycan: structural requirements differ from those for responses to lipopolysaccharide|journal=Infection and Immunity|volume=68|issue=9|pages=5254–5260|doi=10.1128/IAI.68.9.5254-5260.2000|issn=0019-9567|pmc=101786|pmid=10948152}}{{Cite journal|last1=Dziarski|first1=Roman|last2=Gupta|first2=Dipika|date=Feb 1999|title=Function of CD14 as a peptidoglycan receptor: differences and similarities with LPS|url=http://journals.sagepub.com/doi/10.1177/09680519990050010201|journal=Journal of Endotoxin Research|language=en|volume=5|issue=1–2|pages=56–61|doi=10.1177/09680519990050010201|s2cid=85796229|issn=0968-0519|url-access=subscription}}{{Citation|last1=Dziarski|first1=R.|title=Interactions of CD14 with Components of Gram-Positive Bacteria|date=1999|url=https://www.karger.com/Article/FullText/58761|work=Chemical Immunology and Allergy|volume=74|pages=83–107|editor-last=Jack|editor-first=R.S.|place=Basel|publisher=KARGER|language=en|doi=10.1159/000058761|pmid= 10608083|isbn=978-3-8055-6917-0|access-date=2022-02-01|last2=Ulmer|first2=A.J.|last3=Gupta|first3=D.|url-access=subscription}}{{Cite book|url=https://www.worldcat.org/oclc/559648508|title=Glycomicrobiology|date=2000|publisher=Kluwer Academic/Plenum Publishers|others=Ronald J. Doyle|isbn=0-306-46821-2|location=New York|pages=145–186|oclc=559648508}} Furthermore, Dziarski's and Gupta's groups identified the involvement of several signal transduction molecules and pathways in peptidoglycan-induced cell activation.{{Cite journal|last1=Gupta|first1=D.|last2=Jin|first2=Y. P.|last3=Dziarski|first3=R.|date=1995-09-01|title=Peptidoglycan induces transcription and secretion of TNF-alpha and activation of lyn, extracellular signal-regulated kinase, and rsk signal transduction proteins in mouse macrophages|url=https://pubmed.ncbi.nlm.nih.gov/7650392|journal=Journal of Immunology|volume=155|issue=5|pages=2620–2630|doi=10.4049/jimmunol.155.5.2620 |issn=0022-1767|pmid=7650392|s2cid=45885283 }}{{Cite journal|last1=Dziarski|first1=R.|last2=Jin|first2=Y. P.|last3=Gupta|first3=D.|date=Oct 1996|title=Differential activation of extracellular signal-regulated kinase (ERK) 1, ERK2, p38, and c-Jun NH2-terminal kinase mitogen-activated protein kinases by bacterial peptidoglycan|journal=The Journal of Infectious Diseases|volume=174|issue=4|pages=777–785|doi=10.1093/infdis/174.4.777|issn=0022-1899|pmid=8843216|doi-access=free}}{{Cite journal|last1=Gupta|first1=D.|last2=Wang|first2=Q.|last3=Vinson|first3=C.|last4=Dziarski|first4=R.|date=1999-05-14|title=Bacterial peptidoglycan induces CD14-dependent activation of transcription factors CREB/ATF and AP-1|journal=The Journal of Biological Chemistry|volume=274|issue=20|pages=14012–14020|doi=10.1074/jbc.274.20.14012|issn=0021-9258|pmid=10318814|doi-access=free}}{{Cite journal|last1=Xu|first1=Z.|last2=Dziarski|first2=R.|last3=Wang|first3=Q.|last4=Swartz|first4=K.|last5=Sakamoto|first5=K. M.|last6=Gupta|first6=D.|date=2001-12-15|title=Bacterial peptidoglycan-induced tnf-alpha transcription is mediated through the transcription factors Egr-1, Elk-1, and NF-kappaB|journal=Journal of Immunology|volume=167|issue=12|pages=6975–6982|doi=10.4049/jimmunol.167.12.6975|issn=0022-1767|pmid=11739517|s2cid=83509463|doi-access=free}} Dziarski also established that chemokines are the main pro-inflammatory mediators in human monocytes activated by peptidoglycan and other bacterial cell activators.{{Cite journal|last1=Wang|first1=Z. M.|last2=Liu|first2=C.|last3=Dziarski|first3=R.|date=2000-07-07|title=Chemokines are the main proinflammatory mediators in human monocytes activated by Staphylococcus aureus, peptidoglycan, and endotoxin|journal=The Journal of Biological Chemistry|volume=275|issue=27|pages=20260–20267|doi=10.1074/jbc.M909168199|issn=0021-9258|pmid=10751418|doi-access=free}}{{Citation|last1=Wang|first1=Zheng-Ming|title=Measurement of Cytokine and Chemokine mRNA Using Nonisotopic Multiprobe RNase Protection Assay|date=2001-07-19|url=http://link.springer.com/10.1385/1-59259-146-9:125|work=Interleukin Protocols|volume=60|pages=125–143|place=New Jersey|publisher=Humana Press|language=en|doi=10.1385/1-59259-146-9:125|isbn=978-1-59259-146-6|access-date=2022-02-01|last2=Dziarski|first2=Roman|url-access=subscription}}{{Citation|last1=Wang|first1=Zheng-Ming|title=Measurement of Cytokine and Chemokine Gene Expression Patterns Using cDNA Array|date=2001-07-19|url=http://link.springer.com/10.1385/1-59259-146-9:419|work=Interleukin Protocols|volume=60|pages=419–438|place=New Jersey|publisher=Humana Press|language=en|doi=10.1385/1-59259-146-9:419|isbn=978-1-59259-146-6|access-date=2022-02-01|last2=Dziarski|first2=Roman|url-access=subscription}}
Using similar molecular biology approach the research groups of Carsten J. Kirschning (at Tularik Inc.) and Douglas Golenbock (at Boston University School of Medicine) in collaboration with Dziarski, discovered that TLR2 is the cell-activating receptor for peptidoglycan and other components of Gram-positive bacteria.{{Cite journal|last1=Schwandner|first1=R.|last2=Dziarski|first2=R.|last3=Wesche|first3=H.|last4=Rothe|first4=M.|last5=Kirschning|first5=C. J.|date=1999-06-18|title=Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2|journal=The Journal of Biological Chemistry|volume=274|issue=25|pages=17406–17409|doi=10.1074/jbc.274.25.17406|issn=0021-9258|pmid=10364168|doi-access=free}}{{Cite journal|last1=Yoshimura|first1=A.|last2=Lien|first2=E.|last3=Ingalls|first3=R. R.|last4=Tuomanen|first4=E.|last5=Dziarski|first5=R.|last6=Golenbock|first6=D.|date=1999-07-01|title=Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2|journal=Journal of Immunology|volume=163|issue=1|pages=1–5|doi=10.4049/jimmunol.163.1.1 |issn=0022-1767|pmid=10384090|doi-access=free}} In the follow-up studies, Dziarski's and Gupta's groups identified the signal transduction pathway activated by peptidoglycan through TLR2 and verified that TLR2 is indeed the peptidoglycan cell-activating receptor.{{Cite journal|last1=Dziarski|first1=Roman|last2=Wang|first2=Qiuling|last3=Miyake|first3=Kensuke|last4=Kirschning|first4=Carsten J.|last5=Gupta|first5=Dipika|date=2001-02-01|title=MD-2 Enables Toll-Like Receptor 2 (TLR2)-Mediated Responses to Lipopolysaccharide and Enhances TLR2-Mediated Responses to Gram-Positive and Gram-Negative Bacteria and Their Cell Wall Components|journal=The Journal of Immunology|language=en|volume=166|issue=3|pages=1938–1944|doi=10.4049/jimmunol.166.3.1938|pmid=11160242|s2cid=41216073|issn=0022-1767|doi-access=free}}{{Cite journal|last1=Wang|first1=Qiuling|last2=Dziarski|first2=Roman|last3=Kirschning|first3=Carsten J.|last4=Muzio|first4=Marta|last5=Gupta|first5=Dipika|date=Apr 2001|editor-last=Moore|editor-first=R. N.|title=Micrococci and Peptidoglycan Activate TLR2→MyD88→IRAK→TRAF→NIK→IKK→NF-κB Signal Transduction Pathway That Induces Transcription of Interleukin-8|journal=Infection and Immunity|language=en|volume=69|issue=4|pages=2270–2276|doi=10.1128/IAI.69.4.2270-2276.2001|issn=0019-9567|pmc=98155|pmid=11254583}}{{Cite journal|last1=Dziarski|first1=Roman|last2=Gupta|first2=Dipika|date=Aug 2005|title=Staphylococcus aureus Peptidoglycan Is a Toll-Like Receptor 2 Activator: a Reevaluation|journal=Infection and Immunity|language=en|volume=73|issue=8|pages=5212–5216|doi=10.1128/IAI.73.8.5212-5216.2005|issn=0019-9567|pmc=1201261|pmid=16041042}}{{Cite journal|last1=Dziarski|first1=R.|last2=Gupta|first2=D.|date=2000-05-01|title=Role of MD-2 in TLR2- and TLR4-mediated recognition of Gram-negative and Gram-positive bacteria and activation of chemokine genes|url=http://www.ingentaselect.com/rpsv/cgi-bin/cgi?ini=xref&body=linker&reqdoi=10.1179/096805100101532243|journal=Journal of Endotoxin Research|language=en|volume=6|issue=5|pages=401–405|doi=10.1179/096805100101532243|pmid=11521063|url-access=subscription}}
= Discovery of peptidoglycan recognition proteins =
Dziarski's best known contribution to innate immunity is his research on mammalian peptidoglycan recognition proteins (PGRPs). In 2001, Dziarski's and Gupta's groups discovered and cloned three human PGRPs, which they named PGRP-L, PGRP-Iα, and PGRP-Iβ (for long and intermediate size transcripts). They established that the human genome codes for a family of 4 PGRPs: PGRP-S (short PGRP), PGRP-L, PGRP-Iα, and PGRP-Iβ. Subsequently, the Human Genome Organization Gene Nomenclature Committee changed the gene symbols of PGRP-S, PGRP-L, PGRP-Iα, and PGRP-Iβ to PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4, respectively, and this nomenclature is currently also used for other mammalian PGRPs.
Dziarski and his collaborators showed that mammalian PGRPs are selectively expressed in immune and epithelial cells.{{Cite journal|last1=Liu|first1=Chao|last2=Gelius|first2=Eva|last3=Liu|first3=Gang|last4=Steiner|first4=Håkan|last5=Dziarski|first5=Roman|date=Aug 2000|title=Mammalian Peptidoglycan Recognition Protein Binds Peptidoglycan with High Affinity, Is Expressed in Neutrophils, and Inhibits Bacterial Growth|journal=Journal of Biological Chemistry|language=en|volume=275|issue=32|pages=24490–24499|doi=10.1074/jbc.M001239200|pmid=10827080|doi-access=free}}{{Cite journal|last1=Lu|first1=Xiaofeng|last2=Wang|first2=Minhui|last3=Qi|first3=Jin|last4=Wang|first4=Haitao|last5=Li|first5=Xinna|last6=Gupta|first6=Dipika|last7=Dziarski|first7=Roman|date=Mar 2006|title=Peptidoglycan Recognition Proteins Are a New Class of Human Bactericidal Proteins|journal=Journal of Biological Chemistry|language=en|volume=281|issue=9|pages=5895–5907|doi=10.1074/jbc.M511631200|pmid=16354652|doi-access=free}}{{Cite journal|last1=Wang|first1=Haitao|last2=Gupta|first2=Dipika|last3=Li|first3=Xinna|last4=Dziarski|first4=Roman|date=Nov 2005|title=Peptidoglycan Recognition Protein 2 ( N -Acetylmuramoyl- l -Ala Amidase) Is Induced in Keratinocytes by Bacteria through the p38 Kinase Pathway|journal=Infection and Immunity|language=en|volume=73|issue=11|pages=7216–7225|doi=10.1128/IAI.73.11.7216-7225.2005|issn=0019-9567|pmc=1273900|pmid=16239516}}
= Functions of peptidoglycan recognition proteins =
Dziarski and his collaborators established that all mammalian PGRPs bind bacterial peptidoglycan. Then, they identified the functions of human PGRPs: PGLYRP2 is a peptidoglycan-lytic enzyme, N-acetylmuramoyl-L-alanine amidase,{{Cite journal|last1=Wang|first1=Zheng-Ming|last2=Li|first2=Xinna|last3=Cocklin|first3=Ross R.|last4=Wang|first4=Minhui|last5=Wang|first5=Mu|last6=Fukase|first6=Koichi|last7=Inamura|first7=Seiichi|last8=Kusumoto|first8=Shoichi|last9=Gupta|first9=Dipika|last10=Dziarski|first10=Roman|date=Dec 2003|title=Human Peptidoglycan Recognition Protein-L Is an N-Acetylmuramoyl-L-alanine Amidase|journal=Journal of Biological Chemistry|language=en|volume=278|issue=49|pages=49044–49052|doi=10.1074/jbc.M307758200|pmid=14506276|doi-access=free}}{{Cite journal|last1=Zhang|first1=Yinong|last2=van der Fits|first2=Leslie|last3=Voerman|first3=Jane S.|last4=Melief|first4=Marie-Jose|last5=Laman|first5=Jon D.|last6=Wang|first6=Mu|last7=Wang|first7=Haitao|last8=Wang|first8=Minhui|last9=Li|first9=Xinna|last10=Walls|first10=Chad D.|last11=Gupta|first11=Dipika|date=Aug 2005|title=Identification of serum N-acetylmuramoyl-l-alanine amidase as liver peptidoglycan recognition protein 2|url=https://linkinghub.elsevier.com/retrieve/pii/S1570963905002025|journal=Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics|language=en|volume=1752|issue=1|pages=34–46|doi=10.1016/j.bbapap.2005.07.001|pmid=16054449|url-access=subscription}} and PGLYRP1, PGLYRP3, and PGLYRP4 are directly bactericidal for both Gram-positive and Gram-negative bacteria.{{Cite journal|last1=Wang|first1=Minhui|last2=Liu|first2=Li-Hui|last3=Wang|first3=Shiyong|last4=Li|first4=Xinna|last5=Lu|first5=Xiaofeng|last6=Gupta|first6=Dipika|last7=Dziarski|first7=Roman|date=2007-03-01|title=Human Peptidoglycan Recognition Proteins Require Zinc to Kill Both Gram-Positive and Gram-Negative Bacteria and Are Synergistic with Antibacterial Peptides|journal=The Journal of Immunology|language=en|volume=178|issue=5|pages=3116–3125|doi=10.4049/jimmunol.178.5.3116|pmid=17312159|s2cid=22160694|issn=0022-1767|doi-access=free}}
In further research, Dziarski's group established the mechanism of bacterial killing by human PGRPs. They showed that human PGRPs kill bacteria by simultaneously inducing three synergistic stress responses: oxidative stress, thiol stress, and metal stress, by interfering with the function of the bacterial respiratory electron transport chain.{{Cite journal|last1=Kashyap|first1=Des Raj|last2=Wang|first2=Minhui|last3=Liu|first3=Li-Hui|last4=Boons|first4=Geert-Jan|last5=Gupta|first5=Dipika|last6=Dziarski|first6=Roman|date=Jun 2011|title=Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems|journal=Nature Medicine|language=en|volume=17|issue=6|pages=676–683|doi=10.1038/nm.2357|issn=1078-8956|pmc=3176504|pmid=21602801}}{{Cite journal|last1=Kashyap|first1=Des Raj|last2=Rompca|first2=Annemarie|last3=Gaballa|first3=Ahmed|last4=Helmann|first4=John D.|last5=Chan|first5=Jefferson|last6=Chang|first6=Christopher J.|last7=Hozo|first7=Iztok|last8=Gupta|first8=Dipika|last9=Dziarski|first9=Roman|date=2014-07-17|editor-last=Philpott|editor-first=Dana J.|title=Peptidoglycan Recognition Proteins Kill Bacteria by Inducing Oxidative, Thiol, and Metal Stress|journal=PLOS Pathogens|language=en|volume=10|issue=7|pages=e1004280|doi=10.1371/journal.ppat.1004280|issn=1553-7374|pmc=4102600|pmid=25032698 |doi-access=free }}{{Cite journal|last1=Kashyap|first1=Des R.|last2=Kuzma|first2=Marcin|last3=Kowalczyk|first3=Dominik A.|last4=Gupta|first4=Dipika|last5=Dziarski|first5=Roman|date=Sep 2017|title=Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism: E. coli killing by peptidoglycan recognition protein|journal=Molecular Microbiology|language=en|volume=105|issue=5|pages=755–776|doi=10.1111/mmi.13733|pmc=5570643|pmid=28621879}}{{Cite journal|last1=Dziarski|first1=Roman|last2=Gupta|first2=Dipika|date=Feb 2018|title=How innate immunity proteins kill bacteria and why they are not prone to resistance|journal=Current Genetics|language=en|volume=64|issue=1|pages=125–129|doi=10.1007/s00294-017-0737-0|issn=0172-8083|pmc=5777906|pmid=28840318}}{{Cite journal|last1=Kashyap|first1=Des R.|last2=Kowalczyk|first2=Dominik A.|last3=Shan|first3=Yue|last4=Yang|first4=Chun-Kai|last5=Gupta|first5=Dipika|last6=Dziarski|first6=Roman|date=Dec 2020|title=Formate dehydrogenase, ubiquinone, and cytochrome bd-I are required for peptidoglycan recognition protein-induced oxidative stress and killing in Escherichia coli|journal=Scientific Reports|language=en|volume=10|issue=1|pages=1993|doi=10.1038/s41598-020-58302-1|issn=2045-2322|pmc=7005000|pmid=32029761|bibcode=2020NatSR..10.1993K}}{{Cite journal|last1=Yang|first1=Chun-Kai|last2=Kashyap|first2=Des R.|last3=Kowalczyk|first3=Dominik A.|last4=Rudner|first4=David Z.|last5=Wang|first5=Xindan|last6=Gupta|first6=Dipika|last7=Dziarski|first7=Roman|date=Dec 2021|title=Respiratory chain components are required for peptidoglycan recognition protein-induced thiol depletion and killing in Bacillus subtilis and Escherichia coli|journal=Scientific Reports|language=en|volume=11|issue=1|pages=64|doi=10.1038/s41598-020-79811-z|issn=2045-2322|pmc=7794252|pmid=33420211}} Dziarski also showed that bacterial killing by these PGRPs does not involve cell membrane permeabilization, cell wall hydrolysis, or osmotic shock, but is synergistic with antibacterial peptides.
= Cloning and functions of zebrafish peptidoglycan recognition proteins =
Collaborative research of Dipika Gupta's and Dziarski's groups also identified and cloned three zebrafish PGRPs and showed that they are highly expressed in eggs, developing embryos, and adult tissues that contact the external environment.{{Cite journal|last1=Li|first1=Xinna|last2=Wang|first2=Shiyong|last3=Qi|first3=Jin|last4=Echtenkamp|first4=Stephen F.|last5=Chatterjee|first5=Rohini|last6=Wang|first6=Mu|last7=Boons|first7=Geert-Jan|last8=Dziarski|first8=Roman|last9=Gupta|first9=Dipika|date=Sep 2007|title=Zebrafish Peptidoglycan Recognition Proteins Are Bactericidal Amidases Essential for Defense against Bacterial Infections|journal=Immunity|language=en|volume=27|issue=3|pages=518–529|doi=10.1016/j.immuni.2007.07.020|pmc=2074879|pmid=17892854}} They further showed that these PGRPs have both peptidoglycan-lytic amidase and bactericidal activities and are essential for defense against bacterial infections and survival of the developing zebrafish embryos.
= In vivo role of mammalian peptidoglycan recognition proteins =
Dziarski's group also identified several in vivo functions of mammalian PGRPs. Dziarski showed that despite their bactericidal activity, mammalian PGRPs have only a limited role in defense against infections. Intranasal application of PGLYRP3 or PGLYRP4 in mice protects from intranasal lung infection with Staphylococcus aureus and Escherichia coli,{{Cite journal|last1=Dziarski|first1=Roman|last2=Kashyap|first2=Des Raj|last3=Gupta|first3=Dipika|date=2012-06-01|title=Mammalian Peptidoglycan Recognition Proteins Kill Bacteria by Activating Two-Component Systems and Modulate Microbiome and Inflammation|journal=Microbial Drug Resistance|volume=18|issue=3|pages=280–285|doi=10.1089/mdr.2012.0002|issn=1076-6294|pmc=3412580|pmid=22432705}} and PGLYRP1-deficient mice are more sensitive to systemic infections with non-pathogenic bacteria (Micrococcus luteus and Bacillus subtilis).{{Cite journal|last1=Dziarski|first1=Roman|last2=Platt|first2=Kenneth A.|last3=Gelius|first3=Eva|last4=Steiner|first4=Håkan|last5=Gupta|first5=Dipika|date=2003-07-15|title=Defect in neutrophil killing and increased susceptibility to infection with nonpathogenic gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)–deficient mice|journal=Blood|volume=102|issue=2|pages=689–697|doi=10.1182/blood-2002-12-3853|pmid=12649138|issn=0006-4971|doi-access=free}}
Dziarski's group further showed that mouse PGRPs play a role in maintaining healthy microbiome, because PGLYRP1-, PGLYRP2-, PGLYRP3-, and PGLYRP4-deficient mice have significant changes in the composition of their intestinal microbiomes.{{Cite journal|last1=Saha|first1=Sukumar|last2=Jing|first2=Xuefang|last3=Park|first3=Shin Yong|last4=Wang|first4=Shiyong|last5=Li|first5=Xinna|last6=Gupta|first6=Dipika|last7=Dziarski|first7=Roman|date=Aug 2010|title=Peptidoglycan Recognition Proteins Protect Mice from Experimental Colitis by Promoting Normal Gut Flora and Preventing Induction of Interferon-γ|journal=Cell Host & Microbe|language=en|volume=8|issue=2|pages=147–162|doi=10.1016/j.chom.2010.07.005|pmc=2998413|pmid=20709292}}{{Cite journal|last1=Dziarski|first1=Roman|last2=Park|first2=Shin Yong|last3=Kashyap|first3=Des Raj|last4=Dowd|first4=Scot E.|last5=Gupta|first5=Dipika|date=2016-01-04|editor-last=Mizoguchi|editor-first=Emiko|title=Pglyrp-Regulated Gut Microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii Enhance and Alistipes finegoldii Attenuates Colitis in Mice|journal=PLOS ONE|language=en|volume=11|issue=1|pages=e0146162|doi=10.1371/journal.pone.0146162|issn=1932-6203|pmc=4699708|pmid=26727498|bibcode=2016PLoSO..1146162D|doi-access=free}}{{Cite journal|last1=Banskar|first1=Sunil|last2=Detzner|first2=Ashley A.|last3=Juarez-Rodriguez|first3=Maria D.|last4=Hozo|first4=Iztok|last5=Gupta|first5=Dipika|last6=Dziarski|first6=Roman|date=2019-12-15|title=The Pglyrp1 -Regulated Microbiome Enhances Experimental Allergic Asthma|journal=The Journal of Immunology|language=en|volume=203|issue=12|pages=3113–3125|doi=10.4049/jimmunol.1900711|pmid=31704882|s2cid=207942798|issn=0022-1767|doi-access=free}} PGLYRP1-deficient mice also have changes in their lung microbiome.
Dziarski's and Gupta's groups further showed that mouse PGRPs play a role in maintaining anti- and pro-inflammatory homeostasis in the intestine, skin, lungs, and joints. They demonstrated that all four PGLYRPs protect mice from dextran sodium sulfate (DSS)-induced colitis and the effect of PGLYRP2 and PGLYRP3 on the intestinal microbiome is responsible for this protection.{{Cite journal|last1=Jing|first1=Xuefang|last2=Zulfiqar|first2=Fareeha|last3=Park|first3=Shin Yong|last4=Núñez|first4=Gabriel|last5=Dziarski|first5=Roman|last6=Gupta|first6=Dipika|date=2014-09-15|title=Peptidoglycan Recognition Protein 3 and Nod2 Synergistically Protect Mice from Dextran Sodium Sulfate–Induced Colitis|journal=The Journal of Immunology|language=en|volume=193|issue=6|pages=3055–3069|doi=10.4049/jimmunol.1301548|issn=0022-1767|pmc=4157132|pmid=25114103}} They showed that PGLYRP3 and PGLYRP4 are anti-inflammatory and protect mice from experimentally induced atopic dermatitis,{{Cite journal|last1=Park|first1=Shin Yong|last2=Gupta|first2=Dipika|last3=Kim|first3=Chang H.|last4=Dziarski|first4=Roman|date=2011-09-16|editor-last=Jeyaseelan|editor-first=Samithamby|title=Differential Effects of Peptidoglycan Recognition Proteins on Experimental Atopic and Contact Dermatitis Mediated by Treg and Th17 Cells|journal=PLOS ONE|language=en|volume=6|issue=9|pages=e24961|doi=10.1371/journal.pone.0024961|issn=1932-6203|pmc=3174980|pmid=21949809|bibcode=2011PLoSO...624961P|doi-access=free}} and PGLYRP2 is also anti-inflammatory and protects mice from experimentally induced psoriasis-like inflammation.{{Cite journal|last1=Park|first1=Shin Yong|last2=Gupta|first2=Dipika|last3=Hurwich|first3=Risa|last4=Kim|first4=Chang H.|last5=Dziarski|first5=Roman|date=2011-12-01|title=Peptidoglycan Recognition Protein Pglyrp2 Protects Mice from Psoriasis-like Skin Inflammation by Promoting Regulatory T Cells and Limiting Th17 Responses|journal=The Journal of Immunology|language=en|volume=187|issue=11|pages=5813–5823|doi=10.4049/jimmunol.1101068|issn=0022-1767|pmc=3221838|pmid=22048773}} They also showed that some PGRPs have opposite effects, i.e., PGLYRP2 also has a pro-inflammatory effect, as it promotes the development of experimental arthritis,{{Cite journal|last1=Saha|first1=Sukumar|last2=Qi|first2=Jin|last3=Wang|first3=Shiyong|last4=Wang|first4=Minhui|last5=Li|first5=Xinna|last6=Kim|first6=Yun-Gi|last7=Núñez|first7=Gabriel|last8=Gupta|first8=Dipika|last9=Dziarski|first9=Roman|date=Feb 2009|title=PGLYRP-2 and Nod2 Are Both Required for Peptidoglycan-Induced Arthritis and Local Inflammation|journal=Cell Host & Microbe|language=en|volume=5|issue=2|pages=137–150|doi=10.1016/j.chom.2008.12.010|pmc=2671207|pmid=19218085}} and PGLYRP1 is pro-inflammatory and promotes experimentally induced asthma{{Cite journal|last1=Park|first1=Shin Yong|last2=Jing|first2=Xuefang|last3=Gupta|first3=Dipika|last4=Dziarski|first4=Roman|date=2013-04-01|title=Peptidoglycan Recognition Protein 1 Enhances Experimental Asthma by Promoting Th2 and Th17 and Limiting Regulatory T Cell and Plasmacytoid Dendritic Cell Responses|journal=The Journal of Immunology|language=en|volume=190|issue=7|pages=3480–3492|doi=10.4049/jimmunol.1202675|issn=0022-1767|pmc=3608703|pmid=23420883}} and skin inflammation in mice. The pro-inflammatory effect of PGLYRP1 on asthma depends on the PGLYRP1-regulated intestinal microbiome.
= Disease associations of peptidoglycan recognition proteins =
In collaborative research, Dipika Gupta's and Dziarski's groups showed that patients with two forms of inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis, have significantly more frequent missense variants in all four PGLYRP genes than healthy control individuals.{{Cite journal|last1=Zulfiqar|first1=Fareeha|last2=Hozo|first2=Iztok|last3=Rangarajan|first3=Sneha|last4=Mariuzza|first4=Roy A.|last5=Dziarski|first5=Roman|last6=Gupta|first6=Dipika|date=2013-06-19|editor-last=Lenz|editor-first=Laurel L.|title=Genetic Association of Peptidoglycan Recognition Protein Variants with Inflammatory Bowel Disease|journal=PLOS ONE|language=en|volume=8|issue=6|pages=e67393|doi=10.1371/journal.pone.0067393|issn=1932-6203|pmc=3686734|pmid=23840689|bibcode=2013PLoSO...867393Z|doi-access=free}} These results suggest that PGRPs may protect humans from these inflammatory diseases, and that mutations in PGLYRP genes may be among the genetic factors predisposing to these diseases.
Publications and research support
Dziarski authored over 150 scientific publications, which have over 15,000 citations, h-index of 54, and i10-index of 92.{{Cite web|title=Google Scholar, Roman Dziarski|url=https://scholar.google.com/citations?hl=en&user=kQaPA4EAAAAJ}} From 1979 to 2020, Dziarski was a Principal Investigator on more than 20 research grants, including 10 awards from the National Institutes of Health.
Teaching
Dziarski is a dedicated educator. From 1978 to 1984, he taught Immunology and Microbiology to podiatric medicine students at Temple University School of Podiatric Medicine. From 1985 to 2020, he taught Immunology, Microbiology, and elements of Pathology and Pharmacology to medical students at Indiana University School of Medicine–Northwest. He was a Course Director of Microbiology and Immunology, and in 1990 introduced an innovative Problem-Based Learning curriculum. He authored a chapter on Innate Immunity, published in three editions of the popular medical textbook, Schaechter’s Mechanisms of Microbial Disease,{{Cite book|url=https://www.worldcat.org/oclc/769141612|title=Schaechter's mechanisms of microbial disease|date=2013|publisher=Wolters Kluwer Health/Lippincott Williams & Wilkins|others=Moselio Schaechter, N. Cary Engleberg, Victor J. DiRita, Terence Dermody|isbn=978-0-7817-8744-4|edition=5th|location=Philadelphia|pages=66–90|oclc=769141612}}{{Cite book|url=https://www.worldcat.org/oclc/62342789|title=Schaechter's mechanisms of microbial disease|date=2007|publisher=Lippincott Williams & Wilkins|others=Moselio Schaechter, Cary Engleberg, Victor J. DiRita, Terence Dermody|isbn=978-0-7817-5342-5|edition=4th|location=Philadelphia, PA|pages=66–89|oclc=62342789}} and a chapter on peptidoglycan in Molecular Medical Microbiology textbook. Dziarski received seven Teaching Awards at Indiana University.
World War II book
In 2023 Dziarski published a World War II family memoir, “How We Outwitted and Survived the Nazis: The True Story of the Holocaust Rescuers, Zofia Sterner and Her Family”,{{Cite book |last=Dziarski |first=Roman |title=How We Outwitted and Survived the Nazis: The True Story of the Holocaust Rescuers, Zofia Sterner and Her Family |publisher=Academic Studies Press |year=2023 |isbn=9798887191980 |location=Boston, MA}} which received positive reviews.{{Cite web |date= |title=How We Outwitted and Survived the Nazis: The True Story of the Holocaust Rescuers, Zofia Sterner and Her Family by Roman Dziarski |url=https://www.publishersweekly.com/9798887191980 |access-date=2023-12-25 |website=www.publishersweekly.com}}{{Cite web |title=Library Journal |url=https://www.libraryjournal.com/review/how-we-outwitted-and-survived-the-nazis-the-true-story-of-the-holocaust-rescuers-zofia-sterner-and-her-family-1803459 |access-date=2023-12-25 |website=www.libraryjournal.com}} Polish translation was published in 2025.{{Cite book |last=Dziarski |first=Roman |title=Jak przechytrzyliśmy i przeżyliśmy hitlerowców |date=2025-01-27 |publisher=BookEdit |isbn=978-83-68032-90-1 |location=Kiełpin, Poland |publication-date=2025-01-27 |language=Polish}}
Awards and honors
- Stanford University List of World’s Top 2% Scientists, ranked in the top 0.5% to 0.7% of world’s scientists (2018-2024){{Citation |last=Baas |first=Jeroen |title=Supplementary data tables for "A standardized citation metrics author database annotated for scientific field" (PLoS Biology 2019) |date=2019-07-06 |url=https://data.mendeley.com/datasets/btchxktzyw/1 |access-date=2025-02-03 |others=John P.A. Ioannidis, Richard Klavans, Kevin Boyack |chapter=Bibliometrics |volume=1 |publisher=Mendeley |doi=10.17632/BTCHXKTZYW.1}}{{Citation |last=Jeroen Baas |title=August 2021 data-update for "Updated science-wide author databases of standardized citation indicators" |date=2021-10-19 |url=https://data.mendeley.com/datasets/btchxktzyw/3 |access-date=2025-02-03 |others=John P.A. Ioannidis, Kevin Boyack, Jeroen Baas |volume=3 |publisher=Elsevier BV |doi=10.17632/BTCHXKTZYW.3}}{{Cite web |date=October 4, 2023 |title=Stanford University Names World's Top 2% Scientists, 2023 |url=https://ecebm.com/2023/10/04/stanford-university-names-worlds-top-2-scientists-2023/ }}{{Cite web |title=ICSR Lab {{!}} Elsevier |url=https://www.elsevier.com/insights/icsr/lab |access-date=2023-12-01 |website=www.elsevier.com |language=en-us}}{{Citation |last=Ioannidis |first=John P.A. |title=August 2024 data-update for "Updated science-wide author databases of standardized citation indicators" |date=2024-09-16 |url=https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/7 |access-date=2025-02-03 |others=Stanford University |chapter=Bibliometrics |volume=7 |publisher=Elsevier Data Repository |doi=10.17632/BTCHXKTZYW.7}}
- Indiana University Trustees’ Teaching Awards (2001, 2012, and 2018)
- Indiana University School of Medicine Class of 2016 Faculty Teaching Award (2016)
- Indiana University Outstanding Educator (2012, 2013, and 2014)
- Innovation Fellow Award from the Society of Innovators, sponsored by Ivy Tech State College in Indiana (2007)
- Joseph A. Negri Trust Award and Dedication of the Laboratory (2006)
- Indiana University School of Medicine Eminent Scholar (1998 – 1999)
- Editorial Board of Infection and Immunity, the official journal of the American Society for Microbiology (1982 – 2020)
- Editorial Board of Current Immunology Reviews (2004 – 2020)
- Member of the American Association of Immunologists and Federation of American Societies for Experimental Biology (1982 – 2020)
- Member of the American Society for Microbiology (1978 – 2020)
- Dean's Award to the Best Graduating Student at the Faculty of Biology, University of Warsaw, Poland (1971)
Family
Dziarski's mother (Janina Dziarska, née Domańska) and father (Kazimierz W. Dziarski) were both dentists in Warsaw, Poland. Dziarski was married to Agnes Dziarski (née Rewkiewicz), a dentist, from 1971 to 1994. In 1996, Dziarski married Dipika Gupta, a biochemist and molecular biologist at Indiana University School of Medicine.{{Cite web|title=Dipika Gupta, PhD|url=https://medicine.iu.edu/faculty/26544/gupta-dipika|url-status=}} Dziarski has three children: Matthew Dziarski, Alisha Dziarski, and Anjali Dziarski.
See also
References
{{Reflist}}
{{authority control}}
{{DEFAULTSORT:Dziarski, Roman}}
Category:Polish microbiologists
Category:Scientists from Warsaw
Category:Indiana University School of Medicine faculty