Romanov's theorem

{{short description|Theorem on the set of numbers that are the sum of a prime and a positive integer power of the base}}

{{Infobox mathematical statement|name=Romanov's theorem|type=Theorem|field=Additive number theory|first proof by={{ill|Nikolai Pavlovich Romanov|ru|Романов, Николай Павлович (математик)}}|conjectured by=Alphonse de Polignac|conjecture date=1849|first proof date=1934}}

In mathematics, specifically additive number theory, Romanov's theorem is a mathematical theorem proved by Nikolai Pavlovich Romanov. It states that given a fixed base {{Mvar|b}}, the set of numbers that are the sum of a prime and a positive integer power of {{Mvar|b}} has a positive lower asymptotic density.

Statement

Romanov initially stated that he had proven the statements "In jedem Intervall (0, x) liegen mehr als ax Zahlen, welche als Summe von einer Primzahl und einer k-ten Potenz einer ganzen Zahl darstellbar sind, wo a eine gewisse positive, nur von k abhängige Konstante bedeutet" and "In jedem Intervall (0, x) liegen mehr als bx Zahlen, weiche als Summe von einer Primzahl und einer Potenz von a darstellbar sind. Hier ist a eine gegebene ganze Zahl und b eine positive Konstante, welche nur von a abhängt".{{Cite journal|last=Romanoff|first=N. P.|date=1934-12-01|title=Über einige Sätze der additiven Zahlentheorie|journal=Mathematische Annalen|language=de|volume=109|issue=1|pages=668–678|doi=10.1007/BF01449161|s2cid=119938116|issn=1432-1807}} These statements translate to "In every interval (0,x) there are more than \alpha x numbers which can be represented as the sum of a prime number and a {{Mvar|k}}-th power of an integer, where \alpha is a certain positive constant that is only dependent on {{Mvar|k}}" and "In every interval (0,x) there are more than \beta x numbers which can be represented as the sum of a prime number and a power of {{Mvar|a}}. Here {{Mvar|a}} is a given integer and \beta is a positive constant that only depends on {{Mvar|a}}" respectively. The second statement is generally accepted as the Romanov's theorem, for example in Nathanson's book.{{Cite book|last=Nathanson|first=Melvyn B.|url=https://books.google.com/books?id=nbjVBwAAQBAJ&dq=%22Romanov's+Theorem%22&pg=PR7|title=Additive Number Theory The Classical Bases|date=2013-03-14|publisher=Springer Science & Business Media|isbn=978-1-4757-3845-2|language=en}}

Precisely, let d(x)=\frac{\left\vert \{n\le x:n=p+2^k,p\ \textrm{prime,}\ k\in\N\} \right\vert}{x} and let \underline{d}=\liminf_{x\to\infty}d(x), \overline{d}=\limsup_{x\to\infty}d(x). Then Romanov's theorem asserts that \underline{d}>0.{{Cite journal|last1=Elsholtz|first1=Christian|last2=Schlage-Puchta|first2=Jan-Christoph|date=2018-04-01|title=On Romanov's constant|journal=Mathematische Zeitschrift|language=en|volume=288|issue=3|pages=713–724|doi=10.1007/s00209-017-1908-x|s2cid=125994504|issn=1432-1823}}

History

Alphonse de Polignac wrote in 1849 that every odd number larger than 3 can be written as the sum of an odd prime and a power of 2. (He soon noticed a counterexample, namely 959.){{cite journal|last1=de Polignac|first1=A.|date=1849|title=Recherches nouvelles sur les nombres premiers|trans-title=New research on prime numbers|url=https://babel.hathitrust.org/cgi/pt?id=mdp.39015035450967&view=1up&seq=411|journal=Comptes rendus|language=fr|volume=29|pages=397–401}} This corresponds to the case of a=2 in the original statement. The counterexample of 959 was, in fact, also mentioned in Euler's letter to Christian Goldbach,L. Euler, [http://eulerarchive.maa.org/correspondence/letters/OO0879.pdf Letter to Goldbach]. 16-12-1752. but they were working in the opposite direction, trying to find odd numbers that cannot be expressed in the form.

In 1934, Romanov proved the theorem. The positive constant \beta mentioned in the case a=2 was later known as Romanov's constant.{{Cite journal|last=Pintz|first=János|authorlink=János Pintz|date=2006-07-01|title=A note on Romanov's constant|journal=Acta Mathematica Hungarica|language=en|volume=112|issue=1|pages=1–14|doi=10.1007/s10474-006-0060-6|doi-access=|issn=1588-2632}} Various estimates on the constant, as well as \overline{d}, has been made. The history of such refinements are listed below. In particular, since \overline{d} is shown to be less than 0.5 this implies that the odd numbers that cannot be expressed this way has positive lower asymptotic density.

class="wikitable"

|+Refinements of \overline{d} and \underline{d}

!Year

!Lower bound on \underline{d}

!Upper bound on \overline{d}

!Prover

!Notes

1950

|

|0.5-5.06\times 10^{-80}{{Efn|Exact value is 0.5-\frac{1}{2^{241}\times 3\times 5\times 7\times 13\times 17\times 241}.|name=|group=}}

|Paul Erdős

|;{{Cite journal|last=Erdős|first=Paul|date=1950|title=On Integers of the form 2^k+p and some related problems|url=http://pdfs.semanticscholar.org/8a60/262f058fd92e01f26251d6224b00d1e42a8c.pdf|archive-url=https://web.archive.org/web/20190228103140/http://pdfs.semanticscholar.org/8a60/262f058fd92e01f26251d6224b00d1e42a8c.pdf|url-status=dead|archive-date=2019-02-28|journal=Summa Brasiliensis Mathematicae|volume=2|pages=113–125|s2cid=17379721}} First proof of infinitely many odd numbers that are not of the form 2^k+p through
an explicit arithmetic progression

2004

|0.0868

|

|Chen, Xun

|{{Cite journal|last1=Chen|first1=Yong-Gao|last2=Sun|first2=Xue-Gong|date=2004-06-01|title=On Romanoff's constant|journal=Journal of Number Theory|language=en|volume=106|issue=2|pages=275–284|doi=10.1016/j.jnt.2003.11.009|issn=0022-314X|doi-access=free}}

2006

|0.0933

|0.49094093{{Efn|The value cited is 0.4909409303984105956480078184, which is just approximate.|name=|group=}}

|Habsieger, Roblot

|;{{Cite journal|last1=Habsieger|first1=Laurent|last2=Roblot|first2=Xavier-Franc¸ois|date=2006|title=On integers of the form p+2^k|url=https://hal.archives-ouvertes.fr/hal-00863145/document|journal=Acta Arithmetica|volume=1|pages=45–50|doi=10.4064/aa122-1-4|doi-access=free}} Considers only odd numbers; not exact, see note

2006

|0.093626

|

|Pintz

|; originally proved 0.9367, but an error was found and fixing it would yield 0.093626

2010

|0.0936275

|

|Habsieger, Sivak-Fischler

|{{Cite journal|last1=Habsieger|first1=Laurent|last2=Sivak-Fischler|first2=Jimena|date=2010-12-01|title=An effective version of the Bombieri–Vinogradov theorem, and applications to Chen's theorem and to sums of primes and powers of two|journal=Archiv der Mathematik|language=en|volume=95|issue=6|pages=557–566|doi=10.1007/s00013-010-0202-5|s2cid=120510181|issn=1420-8938}}

2018

|0.107648

|

|Elsholtz, Schlage-Puchta

|

{{Notelist}}

Generalisations

Analogous results of Romanov's theorem has been proven in number fields by Riegel in 1961.{{Cite journal|last=Rieger|first=G. J.|date=1961-02-01|title=Verallgemeinerung zweier Sätze von Romanov aus der additiven Zahlentheorie|journal=Mathematische Annalen|language=de|volume=144|issue=1|pages=49–55|doi=10.1007/BF01396540|s2cid=121911723|issn=1432-1807}} In 2015, the theorem was also proven for polynomials in finite fields.{{cite arXiv|last1=Shparlinski|first1=Igor E.|last2=Weingartner|first2=Andreas J.|date=2015-10-30|title=An explicit polynomial analogue of Romanoff's theorem|class=math.NT|eprint=1510.08991}} Also in 2015, an arithmetic progression of Gaussian integers that are not expressible as the sum of a Gaussian prime and a power of {{Mvar|1+i}} is given.{{cite arXiv|last1=Madritsch|first1=Manfred G.|last2=Planitzer|first2=Stefan|date=2018-01-08|title=Romanov's Theorem in Number Fields|class=math.NT|eprint=1512.04869}}

References