Ronald Vale

{{Short description|American biochemist}}

{{Use mdy dates|date=June 2022}}

{{Infobox scientist

| name = Ronald David Vale{{cite web|title=Ron Vale|url=https://www.ascb.org/author/ron-vale/|publisher=American Society for Cell Biology|access-date=November 11, 2018}}

| image = Ronald Vale in September 2018.jpg

| image_size =

| alt =

| caption = Vale in September 2018

| birth_date = {{Birth date and age|1959|1|11}}{{Citation needed|reason=This claim needs a reliable source|date=November 2018}}

| birth_place = Hollywood, California, US{{cite web|title=Autobiography of Ronald D Vale|url=http://www.shawprize.org/en/shaw.php?tmp=3&twoid=104&threeid=267&fourid=526&fiveid=244|publisher=Shaw Prize Foundation|access-date=November 11, 2018|date=June 26, 2017|archive-date=November 6, 2018|archive-url=https://web.archive.org/web/20181106004703/http://www.shawprize.org/en/shaw.php?tmp=3&twoid=104&threeid=267&fourid=526&fiveid=244|url-status=dead}}

| death_date =

| death_place =

| resting_place =

| resting_place_coordinates =

| residence =

| citizenship =

| nationality = American

| fields = Biochemistry
Cell Biology

| workplaces = University of California, San Francisco
Howard Hughes Medical Institute

| alma_mater = Marine Biological Laboratory
Stanford University
University of California, Santa Barbara

| doctoral_advisor = Eric Shooter

| academic_advisors =

| doctoral_students =

| notable_students =

| known_for = Research in molecular motors, particularly kinesin and dynein

| thesis_title = Nerve growth factor receptors and axonal transport

| thesis_url = https://www.worldcat.org/oclc/245275170

| thesis_year = 1985

| awards = Shaw Prize in Life Science and Medicine (2017)
Massry Prize (2013)
Albert Lasker Award for Basic Medical Research (2012)
Wiley Prize in Biomedical Sciences (2012)

| signature =

| signature_alt =

| website =

| spouse =

}}

Ronald David Vale ForMemRS (born 1959) is an American biochemist and cell biologist. He is a Janelia Senior Group Leader at HHMI{{cite web|title=Ron Vale|url=https://www.hhmi.org/scientists/ronald-d-vale}} and an emeritus professor at the Department of Cellular and Molecular Pharmacology, University of California, San Francisco.{{cite web|title=Ron Vale|url=http://cmp.ucsf.edu/faculty/ron-vale|publisher=University of California, San Francisco|access-date=November 11, 2018}} His research is focused on motor proteins, particularly kinesin and dynein.{{cite web|title=Vale Lab|url=https://valelab.ucsf.edu/research/|publisher=University of California, San Francisco|access-date=November 11, 2018}} He was awarded the

Canada Gairdner International Award for Biomedical Research in 2019, the Shaw Prize in Life Science and Medicine in 2017 together with Ian Gibbons, and the Albert Lasker Award for Basic Medical Research in 2012 alongside Michael Sheetz and James Spudich. He is a fellow of the American Academy of Arts and Sciences and a member of the National Academy of Sciences. He was the president of the American Society for Cell Biology in 2012.{{cite web|title=ASCB Presidents|url=https://www.ascb.org/ascb-presidents/|publisher=American Society for Cell Biology|access-date=November 11, 2018}} He has also been an investigator at the Howard Hughes Medical Institute since 1995. In 2019, Vale was named executive director of the Janelia Research Campus and a vice president of HHMI; his appointment began in early 2020 and ended in August 2024.{{cite web|title=Ron Vale Named Next Executive Director of Janelia Research Campus and HHMI Vice President|url=https://www.hhmi.org/news/ron-vale-named-next-executive-director-of-janelia-research-campus-and-hhmi-vice-president|publisher=Howard Hughes Medical Institute|access-date=February 22, 2019}}{{cite web |title=Ronald Vale |url=https://www.janelia.org/people/ronald-vale |website=Janelia Research Campus |publisher=Howard Hughes Medical Institute |access-date=4 June 2025}}

Early life and education

Vale was born in Hollywood, California. His mother, Evelyn, was a former actress; his father, Eugene, was a novelist and screenwriter. He finished high school at Hollywood High School. For his grade 10 science project, he set up a laboratory at the basement of his home to investigate the circadian rhythm of bean plants. His guidance counselor contacted Karl Hammer at the University of California, Los Angeles, who allowed Vale to continue his experiments at his laboratory. His guidance counselor also encouraged Vale to submit his work to the Westinghouse Science Talent Search (now the Regeneron Science Talent Search), where he was selected as one of the top forty students in the US.

Vale is a first-generation university student. He entered the College of Creative Studies, University of California, Santa Barbara, and earned a bachelor's degree in chemistry and biology in 1980.{{cite web|title=Biographical Notes of Laureates|url=http://www.shawprize.org/en/shaw.php?tmp=3&twoid=104&threeid=267&fourid=508|publisher=Shaw Prize Foundation|access-date=November 11, 2018|archive-date=November 3, 2018|archive-url=https://web.archive.org/web/20181103210510/http://www.shawprize.org/en/shaw.php?tmp=3&twoid=104&threeid=267&fourid=508|url-status=dead}} During his study, he first worked at the laboratory of C. Fred Fox at UCLA, then at Robert Lefkowitz's group at Duke University, earning him two articles published in 1984{{cite journal|author1=Vale, Ronald D.|author2=Peterson, Scott W.|author3=Matiuk, Nicholas V.|author4=Fox, C. Fred|title=Purified plasma membranes inhibit polypeptide growth factor-induced DNA synthesis in subconfluent 3T3 cells|journal=Journal of Cell Biology|date=March 1984|volume=98|issue=3|pages=1129–1132|doi=10.1083/jcb.98.3.1129|pmid=6607925|pmc=2113147}} and 1982,{{cite journal|author1=Vale, Ronald D.|author2=De Lean, Andre|author3=Lefkowitz, Robert J.|author4=Stadel, Jeffrey M.|title=Regulation of insulin receptors in frog erythrocytes by insulin and concanavalin A. Evidence for discrete classes of insulin binding sites|journal=Molecular Pharmacology|date=November 1982|volume=22|issue=3|pages=619–626|doi=10.1016/S0026-895X(25)15177-8 |pmid=6759916}} respectively.

In 1980, Vale entered an MD/PhD program at Stanford University, supervised by Eric Shooter, where he studied the nerve growth factor receptor (also known as the neurotrophic factor receptor).{{cite journal|last1=Vale|first1=Ronald D.|title=How lucky can one be? A perspective from a young scientist at the right place at the right time|journal=Nature Medicine|date=October 5, 2012|volume=18|issue=10|pages=1486–1488|doi=10.1038/nm.2925|pmid=23042358|s2cid=205390017|url=https://escholarship.org/uc/item/7sz9j6r0}}

Vale obtained his PhD in neuroscience in 1985. He then spent one year as an NIH staff scientist in Tom Reese's laboratory at the Marine Biological Laboratory at Woods Hole, MA.

Scientific career

While working on Nerve growth factor (NGF) receptors as a graduate student, Vale became interested in exploring the mechanism of how receptors and other molecules are transported in nerve axons. He then heard of the research of Michael Sheetz and James Spudich, who used a video camera on a microscope to film myosin-coated beads moving along actin filaments. In 1983, Vale and Sheetz decided to test whether the movement of myosin on actin was the source for organelle transport in axons, using the squid giant axon as a model. However, since no squid were caught that year at Stanford's Hopkins Marine Station, following Shooter's approval, they went to the Marine Biological Laboratory instead.{{cite journal |last1=Azvolinsky |first1=Anna |title=Motor Man |journal=The Scientist |date=September 2017 |volume=Profile |page=30988 |url=https://www.the-scientist.com/profile/motor-man-30988}}

At the Marine Biological Laboratory, Vale and Sheetz teamed up with Bruce Schnapp and Thomas J. Reese. They found that membrane organelle transport occurred bidirectionally on a microtubule, and not actin filament as Vale had originally thought.{{cite journal|author1=Schnapp, Bruce J.|author2=Vale, Ronald D.|author3=Sheetz, Michael P.|author4=Reese, Thomas S.|title=Single microtubules from squid axoplasm support bidirectional movement of organelles|journal=Cell|date=February 1985|volume=40|issue=2|pages=455–462|doi=10.1016/0092-8674(85)90160-6|pmid=2578325|s2cid=503297}} Vale further demonstrated that purified organelles by themselves rarely moved on microtubules, but movement was observed after adding the cytosol of the axon. He then discovered serendipitously that cytosol caused microtubules to translocate along a glass surface. Similarly, he found that cytosol-coated beads moved along microtubules. These two phenomena provided assays to study microtubule-based motility assay in vitro.{{cite journal|author1=Vale, Ronald D.|author2=Schnapp, Bruce J.|author3=Reese, Thomas S.|author4=Sheetz, Michael P.|title=Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon|journal=Cell|date=March 1985|volume=40|issue=3|pages=559–569|doi=10.1016/0092-8674(85)90204-1|pmid=2578887|s2cid=23387327}} In 1985, Vale, Sheetz and Reese isolated the dominant motor protein in the cytosol, naming it "kinesin." They showed that kinesin only moved in one direction towards the plus ends of microtubules {{cite journal|author1=Vale, Ronald D.|author2=Reese, Thomas S.|author3=Sheetz, Michael P.|title=Identification of a Novel Force-Generating Protein, Kinesin, Involved in Microtubule-Based Motility|journal=Cell|date=August 1985|volume=42|issue=1|pages=39–50|doi=10.1016/S0092-8674(85)80099-4|pmid=3926325|pmc=2851632}} and a second motor (later shown to be dynein by Richard Vallee) moved in the opposite direction. The results of Vale and colleagues on axonal transport were published in five papers in 1985.

Vale did not finish his MD, and joined the University of California, San Francisco as an assistant professor in 1986.{{cite web |last1=Vale |first1=Ron |title=Autobiography of Ronald D. Vale |url=http://www.shawprize.org/en/shaw.php?tmp=3&twoid=104&threeid=267&fourid=526&fiveid=244 |website=The Shaw Prize |access-date=November 18, 2019 |archive-date=November 6, 2018 |archive-url=https://web.archive.org/web/20181106004703/http://www.shawprize.org/en/shaw.php?tmp=3&twoid=104&threeid=267&fourid=526&fiveid=244 |url-status=dead }} He was promoted to associate professor in 1992 and then to full professor in 1994. In 1989, Vale, with Jonathan Howard and A. James Hudspeth developed a single molecular assay for kinesin. In 1991, he discovered the first protein that severed microtubules and later purified and named it katanin.{{cite journal|author1=Vale, Ronald D.|title=Severing of stable microtubules by a mitotically activated protein in Xenopus egg extracts|journal=Cell|date=February 22, 1991|volume=64|issue=4|pages=827–839|doi=10.1016/0092-8674(91)90511-V|pmid=1671762|s2cid=17047599}}{{cite journal|author1=McNally, Francis J.|author2=Vale, Ronald D.|title=Identification of katanin, an ATPase that severs and disassembles stable microtubules|journal=Cell|date=November 3, 1993|volume=75|issue=3|pages=419–429|doi=10.1016/0092-8674(93)90377-3|pmid=8221885|s2cid=10264319}} In 1996, Vale and colleagues solved the crystal structure of the kinesin motor domain.{{cite journal|author1=Kull, F. Jon|author2=Sablin, Elena P.|author3=Lau, Rebecca|author4=Fletterick, Robert J.|author5=Vale, Ronald D.|title=Crystal structure of the kinesin motor domain reveals a structural similarity to myosin|journal=Nature|date=April 11, 1996|volume=380|issue=6574|pages=550–555|doi=10.1038/380550a0|pmid=8606779|pmc=2851642|bibcode=1996Natur.380..550J}} and discovered unexpectedly that it is structurally similar to myosin.{{cite journal |last1=Kull |first1=F. Jon |last2=Sablin |first2=Elena |last3=Lau |first3=Rebecca |display-authors=etal |title=Crystal structure of the kinesin motor domain reveals a structural similarity to myosin |journal=Nature |date=April 11, 1996 |volume=380 |issue=6574 |pages=550–555 |doi=10.1038/380550a0 |pmid=8606779 |pmc=2851642|bibcode=1996Natur.380..550J }} In that same year, working with Toshio Yanagida, Vale developed a single-molecule fluorescence assay for kinesin. In 1999, using various techniques, Vale and co-workers developed a mechanical model for how the two motor domains of the kinesin dimer walk in a “hand-over-hand” model along a microtubule.

Since 2003, Vale has focused on dynein, a motor protein discovered by Ian R. Gibbons in 1965. Although its discovery occurred 20 years before kinesin, its large size hampered its investigation. In 2006, Vale's laboratory prepared recombinant dynein from yeast, and elucidated how it walked on microtubules using single-molecule microscopy.{{cite journal|author1=Reck-Peterson, Samara L.|author2=Yildiz, Ahmet|author3=Carter, Andrew P.|author4=Gennerich, Arne|author5=Zhang, Nan|author6=Vale, Ronald D.|title=Single-molecule analysis of dynein processivity and stepping behavior|journal=Cell|date=July 28, 2006|volume=126|issue=2|pages=335–348|doi=10.1016/j.cell.2006.05.046|pmid=16873064|pmc=2851639}} He then worked with Gibbons to determine the structure of the dynein microtubule-binding domain.{{cite journal|author1=Carter, Andrew P.|author2=Garbarino, Joan E.|author3=Wilson-Kubalek, Elizabeth M.|author4=Shipley, Wesley E.|author5=Cho, Carol|author6=Milligan, Ronald A.|author7=Vale, Ronald D.|author8=Gibbons, Ian R.|title=Structure and Functional Role of Dynein's Microtubule-Binding Domain|journal=Science|date=December 12, 2008|volume=322|issue=5908|pages=1691–1695|doi=10.1126/science.1164424|pmid=19074350|pmc=2663340|bibcode=2008Sci...322.1691C}} His team also solved the structure of the dynein motor domain.{{cite journal|author1=Carter, Andrew P.|author2=Cho, Carol|author3=Jin, Lan|author4=Vale, Ronald D.|title=Crystal Structure of the Dynein Motor Domain|journal=Science|date=March 4, 2011|volume=331|issue=6021|pages=1159–1165|doi=10.1126/science.1202393|pmid=21330489|pmc=3169322|bibcode=2011Sci...331.1159C}} Vale has extended his research to other fields, including T-cell signalling{{cite journal|author1=James, John R.|author2=Vale, Ronald D.|title=Biophysical Mechanism of T Cell Receptor Triggering in a Reconstituted System|journal=Nature|date=July 5, 2012|volume=487|issue=7405|pages=64–69|doi=10.1038/nature11220|pmid=22763440|pmc=3393772|bibcode=2012Natur.487...64J}} and RNA biology.{{cite journal|author1=Jain, Ankur|author2=Vale, Ronald D.|title=RNA Phase Transitions in Repeat Expansion Disorders|journal=Nature|date=June 8, 2017|volume=546|issue=7657|pages=243–247|doi=10.1038/nature22386|pmid=28562589|pmc=5555642|bibcode=2017Natur.546..243J}}

In 2020, Vale was appointed as the second Executive Director of the Howard Hughes Medical Institute's Janelia Research Campus, following the inaugural directorship of Gerald M. Rubin. His directorship corresponded with the onset of the COVID-19 pandemic. As director, he oversaw the start of the 4D Cellular Physiology (4DCP) research area to understand how cells function in the context of tissues and how organismal physiology emerges from cellular function. He became the co-head of 4DCP upon the end of his directorship{{cite web |title=4D Cellular Physiology |url=https://www.janelia.org/our-research/4d-cellular-physiology |website=Janelia Research Campus |publisher=Howard Hughes Medical Institute |access-date=4 June 2025}}.

As Executive Director, Ron Vale highlighted efforts to accelerate the scientific review process, especially for early career researchers. This culminated in a workshop on recognizing peer review for preprints in 2022

{{cite web |title=Recognizing Preprint Peer Review |url=https://www.janelia.org/you-janelia/conferences/recognizing-preprint-peer-review |website=Janelia Research Campus |publisher=Howard Hughes Medical Institute |access-date=4 June 2025}} and a publication{{cite journal |last1=Avissar-Whiting |first1=Michele |title=Recommendations for accelerating open preprint peer review to improve the culture of science |journal=PLOS Biology |date=February 29, 2024 |volume=22 |issue=2 |pages=e3002502 |doi=10.1371/journal.pbio.3002502 |doi-access=free |pmid=38421949 |pmc=10903809 }}.

In August 2024, Ron Vale was succeeded by Nelson Spruston as Executive Director and HHMI Vice President{{cite web |last1=Tomlinson |first1=Alyssa |title=Janelia Names Nelson Spruston Its Third Executive Director |url=https://www.hhmi.org/news/janelia-names-nelson-spruston-its-third-executive-director |website=HHMI |publisher=Howard Hughes Medical Institute |access-date=4 June 2025}}. Vale initially remained at Janelia as a Senior Group Leader before leaving the campus in May 2025 to return to his former role as a HHMI Investigator{{cite web |title=Ronald D Vale |url=https://www.hhmi.org/scientists/ronald-d-vale |website=HHMI |publisher=Howard Hughes Medical Institute |access-date=4 June 2025}}.

Outreach

Vale founded iBiology in 2006, a non-profit organization that produces and disseminates free online videos by leading biologists, speaking about biological principles and their research, and scientific training and professional development for practicing scientists. Vale recently{{Cite tweet |user=explorebiology |number=1178791403184373762 |title=The Explorer's Guide to Biology}}{{Cite web|title=The Explorer's Guide to Biology|url=https://www.willr.design/the-explorers-guide-to-biology|access-date=June 4, 2021|website=will rutter design|language=en-US}} founded and produced [https://explorebiology.org/ The Explorer's Guide to Biology (XBio)], a free online undergraduate "textbook" that provides a storytelling and discover-focused approach to learning biology.

Between 2004 and 2008, Vale and Tim Mitchison co-directed the Physiology Course at the Marine Biological Laboratory in Woods Hole, transforming it into an interdisciplinary training environment that brings together biologists, physicists and computational scientists.

In 2009, Vale established the Young Investigators' Meeting in India, which provides a mentoring and networking workshop for postdocs and junior faculty in India. He founded ASAPbio (Accelerating Science and Publication in Biology) in 2015, promoting the use of preprints and an open and transparent peer-review process. Also in 2009, Vale founded the Bangalore Microscopy Course, held at the National Centre for Biological Research, which provides international training in light microscopy. He also organized an online microscopy course through iBiology.

Nico Stuurman and Vale also conceived of and developed Micro-Manager, a free and open-source microscopy software{{cite web|title=Micro-Manager Open Source Microscopy Software|url=https://micro-manager.org/|publisher=Micro-Manager|access-date=November 12, 2018}} that was supported for many years through the Vale laboratory and now operates through the University of Wisconsin.

Awards and honours

References

{{Reflist|2}}