Rootletin

{{Short description|Protein found in humans}}

{{cs1 config|name-list-style=vanc}}

{{Infobox_gene}}

{{Infobox protein family

| Symbol = Rootletin

| Name = Rootletin

| image =

| width =

| caption =

| Pfam = PF15035

| Pfam_clan =

| InterPro =

| SMART =

| PROSITE =

| MEROPS =

| SCOP =

| TCDB =

| OPM family =

| OPM protein =

| CAZy =

| CDD =

}}

Rootletin, also known as ciliary rootlet coiled-coil protein (CROCC) is a protein in humans that is encoded by the CROCC gene.{{cite journal |vauthors=Yang J, Liu X, Yue G, Adamian M, Bulgakov O, Li T | title = Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet | journal = J Cell Biol | volume = 159 | issue = 3 | pages = 431–40 |date=Nov 2002 | pmid = 12427867 | pmc = 2173070 | doi = 10.1083/jcb.200207153 }}{{cite journal |vauthors=McClintock TS, Glasser CE, Bose SC, Bergman DA | title = Tissue expression patterns identify mouse cilia genes | journal = Physiol Genomics | volume = 32 | issue = 2 | pages = 198–206 |date=Jan 2008 | pmid = 17971504 | doi = 10.1152/physiolgenomics.00128.2007 | url = https://uknowledge.uky.edu/context/physiology_data/article/1002/type/native/viewcontent }}{{cite web | title = Entrez Gene: CROCC ciliary rootlet coiled-coil, rootletin| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9696}}

Rootletin is a component of the ciliary rootlet and, together with CEP68 and CEP250, is required for centrosome cohesion.{{cite journal |vauthors=Graser S, Stierhof YD, Nigg EA | title = Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion | journal = J. Cell Sci. | volume = 120 | issue = Pt 24 | pages = 4321–31 |date=December 2007 | pmid = 18042621 | doi = 10.1242/jcs.020248 | doi-access = free }}

Rootletin is an important protein in the ciliary rootlet, particularly for the structure and is considered important protein in mitosis as a centrosome linker.

Function

This protein forms part of the ciliary rootlet structure. It also contributes to the centrosome cohesion before mitosis.{{cite journal |vauthors=Bahe S, Stierhof YD, Wilkinson CJ, Leiss F, Nigg EA | title = Rootletin forms centriole-associated filaments and functions in centrosome cohesion | journal = J. Cell Biol. | volume = 171 | issue = 1 | pages = 27–33 |date=October 2005 | pmid = 16203858 | pmc = 2171225 | doi = 10.1083/jcb.200504107 }} Expression of rootletin leads to the formation of fibrous protein.

Structure

This protein is part of the structure of a ciliary rootlet. This cytoskeletal-like structure starts from the basal body at one end of the cilium and extends towards the nucleus. Its molecular structure consists of a globular head domain and a tail domain made up of coiled-coil structures.

Protein interactions

A large coiled-coil protein, C-Nap1, is a docking site for the fibrous tether to proximal ends of centrioles which Rootletin physically interacts with. Furthermore, Rootletin is phosphorylated by Nek2 kinase.{{cite journal |vauthors=Lim HH, Zhang T, Surana U | title = Regulation of centrosome separation in yeast and vertebrates: common threads | journal = Trends Cell Biol. | volume = 19 | issue = 7 | pages = 325–33 |date=July 2009 | pmid = 19576775 | doi = 10.1016/j.tcb.2009.03.008 }}

References

{{reflist}}

Further reading

{{refbegin | 2}}

  • {{cite journal |vauthors=Ching YP, Chan SF, Jeang KT, Jin DY |title=The retroviral oncoprotein Tax targets the coiled-coil centrosomal protein TAX1BP2 to induce centrosome overduplication. |journal=Nat. Cell Biol. |volume=8 |issue= 7 |pages= 717–24 |year= 2006 |pmid= 16767081 |doi= 10.1038/ncb1432 |hdl=10722/54244 |s2cid=10140583 |hdl-access=free }}
  • {{cite journal |vauthors=Gregory SG, Barlow KF, McLay KE, etal |title=The DNA sequence and biological annotation of human chromosome 1. |journal=Nature |volume=441 |issue= 7091 |pages= 315–21 |year= 2006 |pmid= 16710414 |doi= 10.1038/nature04727 |bibcode=2006Natur.441..315G |doi-access= free }}
  • {{cite journal |vauthors=Andersen JS, Wilkinson CJ, Mayor T, etal |title=Proteomic characterization of the human centrosome by protein correlation profiling. |journal=Nature |volume=426 |issue= 6966 |pages= 570–4 |year= 2003 |pmid= 14654843 |doi= 10.1038/nature02166 |bibcode=2003Natur.426..570A |s2cid=4427303 }}
  • {{cite journal |vauthors=Behrends U, Schneider I, Rössler S, etal |title=Novel tumor antigens identified by autologous antibody screening of childhood medulloblastoma cDNA libraries. |journal=Int. J. Cancer |volume=106 |issue= 2 |pages= 244–51 |year= 2003 |pmid= 12800201 |doi= 10.1002/ijc.11208 |doi-access= free }}
  • {{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M |doi-access=free }}
  • {{cite journal |vauthors=Seki N, Ohira M, Nagase T, etal |title=Characterization of cDNA clones in size-fractionated cDNA libraries from human brain. |journal=DNA Res. |volume=4 |issue= 5 |pages= 345–9 |year= 1998 |pmid= 9455484 |doi=10.1093/dnares/4.5.345 |doi-access=free }}

{{refend}}