Rosati involution

{{Short description|Group theoretic operation}}

In mathematics, a Rosati involution, named after Carlo Rosati, is an involution of the rational endomorphism ring of an abelian variety induced by a polarisation.

Let A be an abelian variety, let \hat{A} = \mathrm{Pic}^0(A) be the dual abelian variety, and for a\in A, let T_a:A\to A be the translation-by-a map, T_a(x)=x+a. Then each divisor D on A defines a map \phi_D:A\to\hat A via \phi_D(a)=[T_a^*D-D]. The map \phi_D is a polarisation if D is ample. The Rosati involution of \mathrm{End}(A)\otimes\mathbb{Q} relative to the polarisation \phi_D sends a map \psi\in\mathrm{End}(A)\otimes\mathbb{Q} to the map \psi'=\phi_D^{-1}\circ\hat\psi\circ\phi_D, where \hat\psi:\hat A\to\hat A is the dual map induced by the action of \psi^* on \mathrm{Pic}(A).

Let \mathrm{NS}(A) denote the Néron–Severi group of A. The polarisation \phi_D also induces an inclusion \Phi:\mathrm{NS}(A)\otimes\mathbb{Q}\to\mathrm{End}(A)\otimes\mathbb{Q} via \Phi_E=\phi_D^{-1}\circ\phi_E. The image of \Phi is equal to \{\psi\in\mathrm{End}(A)\otimes\mathbb{Q}:\psi'=\psi\}, i.e., the set of endomorphisms fixed by the Rosati involution. The operation E\star F=\frac12\Phi^{-1}(\Phi_E\circ\Phi_F+\Phi_F\circ\Phi_E) then gives \mathrm{NS}(A)\otimes\mathbb{Q} the structure of a formally real Jordan algebra.

References

  • {{Citation | last1=Mumford | first1=David | author1-link=David Mumford | title=Abelian varieties | orig-year=1970 | publisher=American Mathematical Society | location=Providence, R.I. | series=Tata Institute of Fundamental Research Studies in Mathematics | isbn=978-81-85931-86-9 | oclc=138290 |mr=0282985 | year=2008 | volume=5}}
  • {{Citation | last1=Rosati | first1=Carlo | title=Sulle corrispondenze algebriche fra i punti di due curve algebriche. | language=Italian | doi=10.1007/BF02419717 | year=1918 | journal=Annali di Matematica Pura ed Applicata | volume=3 | issue=28 | pages=35–60| s2cid=121620469 | url=https://zenodo.org/record/2226998 }}

Category:Algebraic geometry

Category:Ring theory