Routh–Hurwitz matrix
{{Short description|Matrix used to analyze the stability of a polynomial by its coefficients}}
{{About|the matrices used to check stability of polynomials|matrices whose eigenvalues have negative real part|Hurwitz-stable matrix}}
In mathematics, the Routh–Hurwitz matrix,{{cite book |last1=Horn |first1=Roger |last2=Johnson |first2=Charles |title=Topics in matrix analysis |date=1991 |isbn=0-521-30587-X |page=101}} or more commonly just Hurwitz matrix, corresponding to a polynomial is a particular matrix whose nonzero entries are coefficients of the polynomial.
Hurwitz matrix and the Hurwitz stability criterion
Namely, given a real polynomial
:
the square matrix
:
H=
\begin{pmatrix}
a_1 & a_3 & a_5 & \dots & \dots & \dots & 0 & 0 & 0 \\
a_0 & a_2 & a_4 & & & & \vdots & \vdots & \vdots \\
0 & a_1 & a_3 & & & & \vdots & \vdots & \vdots \\
\vdots & a_0 & a_2 & \ddots & & & 0 & \vdots & \vdots \\
\vdots & 0 & a_1 & & \ddots & & a_n & \vdots & \vdots \\
\vdots & \vdots & a_0 & & & \ddots & a_{n-1} & 0 & \vdots \\
\vdots & \vdots & 0 & & & & a_{n-2} & a_n & \vdots \\
\vdots & \vdots & \vdots & & & & a_{n-3} & a_{n-1} & 0 \\
0 & 0 & 0 & \dots & \dots & \dots & a_{n-4} & a_{n-2} & a_n
\end{pmatrix}.
is called Hurwitz matrix corresponding to the polynomial . It was established by Adolf Hurwitz in 1895 that a real polynomial with is stable
(that is, all its roots have strictly negative real part) if and only if all the leading principal minors of the matrix are positive:
:
\begin{align}
\Delta_1(p) &= \begin{vmatrix} a_{1} \end{vmatrix} &&=a_{1} > 0 \\[2mm]
\Delta_2(p) &= \begin{vmatrix}
a_{1} & a_{3} \\
a_{0} & a_{2} \\
\end{vmatrix} &&= a_2 a_1 - a_0 a_3 > 0\\[2mm]
\Delta_3(p) &= \begin{vmatrix}
a_{1} & a_{3} & a_{5} \\
a_{0} & a_{2} & a_{4} \\
0 & a_{1} & a_{3} \\
\end{vmatrix} &&= a_3 \Delta_2 - a_1 (a_1 a_4 - a_0 a_5 ) > 0
\end{align}
and so on. The minors are called the Hurwitz determinants. Similarly, if then the polynomial is stable if and only if the principal minors have alternating signs starting with a negative one.
Example
As an example, consider the matrix
:
M=
\begin{pmatrix}
-1 & -1 & 0 \\
1 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix},
and let
:
\begin{align}
p(x)&=\det(xI-M)\\
&=
\begin{vmatrix}
x+1 & 1 & 0 \\
-1 & x+1 & 0 \\
0 & 0 & x+1
\end{vmatrix}\\
&=(x+1)^3-(1)(-1)(x+1)\\
&=x^3+3x^2+4x+2
\end{align}
be the characteristic polynomial of . The Routh–Hurwitz matrix{{NoteTag|name=confusion|Both Routh–Hurwitz and Hurwitz-stable matrices are more commonly referred to simply as Hurwitz matrices. To reduce the risk of confusion, this section avoids that terminology.}} associated to is then
:
H=
\begin{pmatrix}
3 & 2 & 0 \\
1 & 4 & 0 \\
0 & 3 & 2
\end{pmatrix}.
The leading principal minors of are
:
\begin{align}
\Delta_1(p) &= \begin{vmatrix} 3\end{vmatrix} &&=3>0\\[2mm]
\Delta_2(p) &= \begin{vmatrix}
3 & 2 \\
1 & 4 \\
\end{vmatrix} &&= 12 - 2 = 10 > 0\\[2mm]
\Delta_3(p) &= \begin{vmatrix}
3 & 2 & 0 \\
1 & 4 & 0 \\
0 & 3 & 2 \\
\end{vmatrix} &&= 2\Delta_2(p)=20 > 0.
\end{align}
Since the leading principal minors are all positive, all of the roots of have negative real part. Moreover, since is the characteristic polynomial of , it follows that all the eigenvalues of have negative real part, and hence is a Hurwitz-stable matrix.{{NoteTag|name=confusion}}
See also
Notes
{{NoteFoot}}
References
{{reflist}}
- {{cite journal
|last1=Asner |first1=Bernard A. Jr.
|year=1970
|title=On the Total Nonnegativity of the Hurwitz Matrix
|journal=SIAM Journal on Applied Mathematics
|volume=18 |issue=2 |pages=407–414
|doi=10.1137/0118035
|jstor=2099475
}}
- {{cite journal
|last1=Dimitrov |first1=Dimitar K.
|last2=Peña |first2=Juan Manuel
|year=2005
|title=Almost strict total positivity and a class of Hurwitz polynomials
|journal=Journal of Approximation Theory
|volume=132 |issue=2 |pages=212–223
|doi=10.1016/j.jat.2004.10.010
|doi-access=free
|hdl=11449/21728
|hdl-access=free
}}
- {{cite book
|last=Gantmacher |first=F. R.
|year=1959
|title=Applications of the Theory of Matrices
|publisher=Interscience
|location=New York
}}
- {{cite journal
|last=Hurwitz |first=A.
|year=1895
|title=Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt
|journal=Mathematische Annalen
|url=http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002255472
|volume=46
|issue=2
|pages=273–284
|doi=10.1007/BF01446812
|s2cid=121036103
}}
- {{cite journal
|last1=Lehnigk |first1=Siegfried H.
|year=1970
|title=On the Hurwitz matrix
|journal=Zeitschrift für Angewandte Mathematik und Physik
|volume=21 |issue=3 |pages=498–500
|bibcode=1970ZaMP...21..498L
|doi=10.1007/BF01627957
|s2cid=123380473
}}
{{Matrix classes}}