Rubrene

{{chembox

| Watchedfields = changed

| verifiedrevid = 464384456

| ImageFile = Rubrene.svg

| ImageSize = 170

| ImageAlt = Skeletal formula

| ImageFile1 = Rubrene-3D-spacefill.png

| ImageAlt1 = Space-filling model

| ImageFile2 = Rubrene.jpg

| PIN = 5,6,11,12-Tetraphenyltetracene

| OtherNames = 5,6,11,12-Tetraphenylnaphthacene, rubrene

|Section1={{Chembox Identifiers

| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}

| ChemSpiderID = 61510

| InChI = 1/C42H28/c1-5-17-29(18-6-1)37-33-25-13-14-26-34(33)39(31-21-9-3-10-22-31)42-40(32-23-11-4-12-24-32)36-28-16-15-27-35(36)38(41(37)42)30-19-7-2-8-20-30/h1-28H

| InChIKey = YYMBJDOZVAITBP-UHFFFAOYAD

| StdInChI_Ref = {{stdinchicite|correct|chemspider}}

| StdInChI = 1S/C42H28/c1-5-17-29(18-6-1)37-33-25-13-14-26-34(33)39(31-21-9-3-10-22-31)42-40(32-23-11-4-12-24-32)36-28-16-15-27-35(36)38(41(37)42)30-19-7-2-8-20-30/h1-28H

| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}

| StdInChIKey = YYMBJDOZVAITBP-UHFFFAOYSA-N

| CASNo_Ref = {{cascite|correct|CAS}}

| CASNo = 517-51-1

| EINECS = 208-242-0

| PubChem = 68203

| SMILES = c5(c3c(c1ccccc1c(c2ccccc2)c3c(c4ccccc4)c6ccccc56)c7ccccc7)c8ccccc8

}}

|Section2={{Chembox Properties

| Formula = C42H28

| MolarMass = 532.7 g/mol

| Appearance =

| Density =

| MeltingPtC = 315

| BoilingPt =

| Solubility =

}}

|Section3={{Chembox Hazards

| MainHazards =

| FlashPt =

| AutoignitionPt =

}}

}}

Rubrene (5,6,11,12-tetraphenyltetracene) is the organic compound with the formula {{chem2|(C18H8(C6H5)4}}. It is a red colored polycyclic aromatic hydrocarbon. Because of its distinctive optical and electrical properties, rubrene has been extensively studied. It has been used as a sensitiser in chemoluminescence and as a yellow light source in lightsticks.{{cite journal |doi=10.1021/acs.chemrev.2c00844 |title=Highly Ordered Small Molecule Organic Semiconductor Thin-Films Enabling Complex, High-Performance Multi-Junction Devices |date=2023 |last1=Sawatzki-Park |first1=Michael |last2=Wang |first2=Shu-Jen |last3=Kleemann |first3=Hans |last4=Leo |first4=Karl |journal=Chemical Reviews |volume=123 |issue=13 |pages=8232–8250 |pmid=37315945 |pmc=10347425 }}

Electronic properties

As an organic semiconductor, the major application of rubrene is in organic light-emitting diodes (OLEDs) and organic field-effect transistors, which are the core elements of flexible displays. Single-crystal transistors can be prepared using crystalline rubrene, which is grown in a modified zone furnace on a temperature gradient. This technique, known as physical vapor transport, was introduced in 1998.{{cite journal|doi=10.1016/S0022-0248(98)00034-7|title=Physical vapor growth of organic semiconductors|journal=Journal of Crystal Growth|volume=187|issue=3–4|pages=449|year=1998|last1=Laudise|first1=R.A|last2=Kloc|first2=Ch|last3=Simpkins|first3=P.G|last4=Siegrist|first4=T|bibcode=1998JCrGr.187..449L}}Jurchescu, Oana Diana (2006) [http://dissertations.ub.rug.nl/FILES/faculties/science/2006/o.d.jurchescu/06_c6.pdf "Low Temperature Crystal Structure of Rubrene Single Crystals Grown by Vapor Transport"] in Molecular organic semiconductors for electronic devices, PhD thesis Rijksuniversiteit Groningen.

Rubrene holds the distinction of being the organic semiconductor with the highest carrier mobility, reaching 40 cm2/(V·s) for holes. This value was measured in OFETs prepared by peeling a thin layer of single-crystalline rubrene and transferring to a Si/SiO2 substrate.{{cite journal |journal=Science and Technology of Advanced Materials |volume=10 |issue=2 |date=6 July 2009 |article-number=024314 |title=Organic field-effect transistors using single crystals |last1=Hasegawa |first1=Tatsuo |last2=Takeya |first2=Jun |bibcode=2009STAdM..10b4314H |doi=10.1088/1468-6996/10/2/024314 |pmc=5090444 |pmid=27877287 }}

Crystal structure

Several polymorphs of rubrene are known. Crystals grown from vapor in vacuum can be monoclinic,{{cite journal|author=Taylor, W. H.|journal= Zeitschrift für Kristallographie|title= X-ray measurements on diflavylene, rubrene, and related compounds|volume= 93|page= 151|date=1936|issue= 1–6|doi=10.1524/zkri.1936.93.1.151|s2cid= 101491070}} triclinic,Akopyan, S. A.; Avoyan, R. L. and Struchkov, Yu. T. Z. Strukt. Khim. 3, 602 (1962) and orthorhombic motifs.{{cite journal|author=Henn, D. E.|author2=Williams, W. G.|name-list-style=amp |journal= J. Appl. Crystallogr.|doi=10.1107/S0021889871006812|title=Crystallographic data for an orthorhombic form of rubrene|volume= 4|page= 256 |date=1971|issue=3}} Orthorhombic crystals (space group Bbam) are obtained in a closed system in a two-zone furnace at ambient pressure.Bulgarovskaya, I.; Vozzhennikov, V.; Aleksandrov, S.; Belsky, V. (1983). Latv. PSR Zinat. Akad. Vestis, Fiz. Teh. Zinat. Ser. 4. 53: 115

Synthesis

Rubrene is prepared by treating 1,1,3-Triphenyl-2-propyn-1-ol with thionyl chloride.{{cite book |first=B.|last=Furniss|title = Vogel's Textbook of Practical Organic Chemistry|edition=5th|pages=840–841}}

:500px

The resulting chloroallene undergoes dimerization and dehydrochlorination to give rubrene.{{cite book |first=B.|last=Furniss|title = Vogel's Textbook of Practical Organic Chemistry|edition=5th|pages=844–845}}

:350px

Redox properties

Rubrene, like other polycyclic aromatic molecules, undergoes redox reactions in solution. It oxidizes and reduces reversibly at 0.95 V and −1.37 V, respectively vs SCE. When the cation and anion are co-generated in an electrochemical cell, they can combine with annihilation of their charges, but producing an excited rubrene molecule that emits at 540 nm. This phenomenon is called electrochemiluminescence.{{cite journal|author=Richter, M. M.|title=Electrochemiluminescence (ECL)|journal=Chemical Reviews|volume=104|issue=6|pages=3003–36|doi=10.1021/cr020373d|pmid=15186186|year=2004}}

References