Ruby pressure scale

{{Short description|Method used in diamond anvil cells}}

File:Ruby fluorescence spectra at 1atm, 2.23 GPa and 4 GPa.png The ruby fluorescence pressure scale is an optical method to measure pressure within a sample chamber of a diamond anvil cell apparatus.{{Cite journal|last=Bassett|first=William A.|date=2009-05-21|title=Diamond anvil cell, 50th birthday|url=http://dx.doi.org/10.1080/08957950802597239|journal=High Pressure Research|volume=29|issue=2|pages=163–186|doi=10.1080/08957950802597239|s2cid=15204168 |issn=0895-7959|url-access=subscription}} Since it is an optical method, which fully make use of the transparency of diamond anvils and only requires an access to a small scale laser generator, it has become the most prevalent pressure gauge method in high pressure sciences.

Principles

Ruby is chromium-doped corundum (Al2O3). The Cr3+ in corundum's lattice forms an octahedra with surrounding oxygen ions. The octahedral crystal field together with spin-orbital interaction results in different energy levels. Once 3d electrons in Cr3+ are energized by lasers, the excited electrons would go to 4T2 and 2T2 levels. Later they return to 2E levels and the R1, R2 lines come from luminescence from 2E levels to 4A2 ground level.{{Cite journal|last=Syassen|first=K.|date=June 2008|title=Ruby under pressure|url=http://www.tandfonline.com/doi/abs/10.1080/08957950802235640|journal=High Pressure Research|language=en|volume=28|issue=2|pages=75–126|doi=10.1080/08957950802235640|s2cid=95275637 |issn=0895-7959|url-access=subscription}} The energy difference of 2E levels are 29 cm−1, corresponding to the splitting of R1, R2 lines at 1.39 nm.

Development

Ruby fluorescence spectra has two strong sharp lines, R1 and R2. R1 refers to the stronger intensity and lower energy (longer wavelength) excitation and is used to gauge pressure.

Pressure is calculated as: P(Mbar)=\frac{a}{b}[\left ( \frac{\lambda}{\lambda_0} \right )^b-1], where λ0 is the R1 wavelength measured at 1atm, a and b are constants. (e.g. a = 19.04, b = 5{{Cite journal|last1=Mao|first1=H. K.|last2=Bell|first2=P. M.|last3=Shaner|first3=J. W.|last4=Steinberg|first4=D. J.|date=June 1978|title=Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby "R1" fluorescence pressure gauge from 0.06 to 1 Mbar|url=http://aip.scitation.org/doi/10.1063/1.325277|journal=Journal of Applied Physics|language=en|volume=49|issue=6|pages=3276–3283|doi=10.1063/1.325277|issn=0021-8979|url-access=subscription}})

Since first demonstrated by Forman and colleagues in 1972,{{Cite journal|last1=Forman|first1=Richard A.|last2=Piermarini|first2=Gasper J.|last3=Barnett|first3=J. Dean|last4=Block|first4=Stanley|date=1972-04-21|title=Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence|url=http://dx.doi.org/10.1126/science.176.4032.284|journal=Science|volume=176|issue=4032|pages=284–285|doi=10.1126/science.176.4032.284|pmid=17791916 |s2cid=8845394 |issn=0036-8075|url-access=subscription}}{{Cite journal|last=Piermarini|first=G.J.|date=Nov 2011|title=High pressure X-ray crystallography with the diamond cell at NIST/NBS|journal=Journal of Research of the National Institute of Standards and Technology|volume=106|issue=6|pages=910–912|doi=10.6028/jres.106.045|pmid=27500054 |pmc=4865304 |s2cid=18150811 |issn=1044-677X|doi-access=free}} many scientists have contributed to the establishment of accurate ruby pressure scale in various experimental conditions.

A likely incomplete summary of is given below:

class="wikitable"

|+

!Year

!First Author

!a

!b

!Primary pressure standard used

!Temperature

!Pressure range

!Pressure transmitting medium

!References

1972

|R. A. Forman

| -

|-, linear

|Transitions of CCl4, H2O, C2H5Br, n-C7H16

|Room temperature

|2.2 GPa

|See standards used

|

1978

|H. K. Mao

|1904

|5

|Ag, Cu, Mo, Pd

|Room temperature

|6 - 100 GPa

|M-E, H2O

|

1986

|H. K. Mao

|1904

|7.665

|Cu, Ag, Ar

|Room temperature

|80 GPa

|Ar

|{{Cite journal|last1=Mao|first1=H. K.|last2=Xu|first2=J.|last3=Bell|first3=P. M.|date=1986|title=Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions|url=http://dx.doi.org/10.1029/jb091ib05p04673|journal=Journal of Geophysical Research|volume=91|issue=B5|pages=4673|doi=10.1029/jb091ib05p04673|issn=0148-0227|url-access=subscription}}

2004

|A. Dewaele

|1904

|9.5

|Al, Cu, W

|Room temperature

|153 GPa

|Helium

|{{Cite journal|last1=Dewaele|first1=Agnès|last2=Loubeyre|first2=Paul|last3=Mezouar|first3=Mohamed|date=2004-09-22|title=Equations of state of six metals above94GPa|url=http://dx.doi.org/10.1103/physrevb.70.094112|journal=Physical Review B|volume=70|issue=9|doi=10.1103/physrevb.70.094112|issn=1098-0121|url-access=subscription}}

2005

|A. D. Chijioke

|1876(6.7)

|10.71(0.14)

|Au, Pt

|Room temperature

|150 GPa

|Helium, Hydrogen, Ar

|{{Cite journal|last1=Chijioke|first1=Akobuije D.|last2=Nellis|first2=W. J.|last3=Soldatov|first3=A.|last4=Silvera|first4=Isaac F.|date=Dec 2005|title=The ruby pressure standard to 150GPa|url=http://aip.scitation.org/doi/10.1063/1.2135877|journal=Journal of Applied Physics|language=en|volume=98|issue=11|pages=114905|doi=10.1063/1.2135877|issn=0021-8979}}

2008

|S.D Jacobsen

|1904

|10.32(7)

|MgO

|Room temperature

|118 GPa

|Helium

|{{Cite journal|last1=Jacobsen|first1=S. D.|last2=Holl|first2=C. M.|last3=Adams|first3=K. A.|last4=Fischer|first4=R. A.|last5=Martin|first5=E. S.|last6=Bina|first6=C. R.|last7=Lin|first7=J.-F.|last8=Prakapenka|first8=V. B.|last9=Kubo|first9=A.|last10=Dera|first10=P.|date=2008-11-01|title=Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media|url=http://dx.doi.org/10.2138/am.2008.2988|journal=American Mineralogist|volume=93|issue=11–12|pages=1823–1828|doi=10.2138/am.2008.2988|s2cid=21661728 |issn=0003-004X|url-access=subscription}}

2012

|H. Yamaoka

|1762*ln(λ/λ0)

|

|Ruby R1

|Low temperature to 16K

|26 GPa

|M-E, Silicone oil

|{{Cite journal|last1=Yamaoka|first1=Hitoshi|last2=Zekko|first2=Yumiko|last3=Jarrige|first3=Ignace|last4=Lin|first4=Jung-Fu|last5=Hiraoka|first5=Nozomu|last6=Ishii|first6=Hirofumi|last7=Tsuei|first7=Ku-Ding|last8=Mizuki|first8=Jun'ichiro|date=2012-12-15|title=Ruby pressure scale in a low-temperature diamond anvil cell|url=http://aip.scitation.org/doi/10.1063/1.4769305|journal=Journal of Applied Physics|language=en|volume=112|issue=12|pages=124503|doi=10.1063/1.4769305|issn=0021-8979|url-access=subscription|doi-access=free}}

2020

|G. Shen

|1870

|5.63(3)

|MgO, Mo, Cu, Diamond

|Room temperature

|150 GPa

|Helium

|{{Cite journal|last1=Shen|first1=Guoyin|last2=Wang|first2=Yanbin|last3=Dewaele|first3=Agnes|last4=Wu|first4=Christine|last5=Fratanduono|first5=Dayne E.|last6=Eggert|first6=Jon|last7=Klotz|first7=Stefan|last8=Dziubek|first8=Kamil F.|last9=Loubeyre|first9=Paul|last10=Fat’yanov|first10=Oleg V.|last11=Asimow|first11=Paul D.|date=2020-07-02|title=Toward an international practical pressure scale: A proposal for an IPPS ruby gauge (IPPS-Ruby2020)|url=https://www.tandfonline.com/doi/full/10.1080/08957959.2020.1791107|journal=High Pressure Research|language=en|volume=40|issue=3|pages=299–314|doi=10.1080/08957959.2020.1791107|s2cid=225460396 |issn=0895-7959}}

References