Runcinated 5-cubes#Runcinated 5-cube
class=wikitable align=right width=450 style="margin-left:1em;" |
align=center valign=top
|150px |150px |150px |
align=center valign=top
|150px |150px |150px |
align=center valign=top
|150px |150px |150px |
colspan=3|Orthogonal projections in B5 Coxeter plane |
---|
In five-dimensional geometry, a runcinated 5-cube is a convex uniform 5-polytope that is a runcination (a 3rd order truncation) of the regular 5-cube.
There are 8 unique degrees of runcinations of the 5-cube, along with permutations of truncations and cantellations. Four are more simply constructed relative to the 5-orthoplex.
{{TOC left}}
{{-}}
Runcinated 5-cube
class="wikitable" align="right" style="margin-left:10px" width="290" |
bgcolor=#e7dcc3 align=center colspan=3|Runcinated 5-cube |
style="width:100px" bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope |
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2| t0,3{4,3,3,3} |
bgcolor=#e7dcc3|Coxeter diagram
|colspan=2|{{CDD|node_1|4|node|3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|4-faces
|202 |10 {{CDD|node_1|4|node|3|node|3|node_1}} File:Schlegel_half-solid_runcinated_8-cell.png |
bgcolor=#e7dcc3|Cells
|1240 |40 {{CDD|node_1|4|node|3|node}} File:Uniform polyhedron-43-t0.png |
bgcolor=#e7dcc3|Faces
|2160 |240 {{CDD|node_1|4|node}} File:Regular quadrilateral.svg |
bgcolor=#e7dcc3|Edges
|1440 |480+960 |
bgcolor=#e7dcc3|Vertices
|colspan=2|320 |
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px |
bgcolor=#e7dcc3|Coxeter group
|colspan=2| B5 [4,3,3,3] |
bgcolor=#e7dcc3|Properties
|colspan=2|convex |
= Alternate names =
- Small prismated penteract (Acronym: span) (Jonathan Bowers)
= Coordinates =
The Cartesian coordinates of the vertices of a runcinated 5-cube having edge length 2 are all permutations of:
:
= Images =
{{5-cube Coxeter plane graphs|t03|150}}
Runcitruncated 5-cube
class="wikitable" align="right" style="margin-left:10px" width="290"
!bgcolor=#e7dcc3 colspan=3|Runcitruncated 5-cube |
style="width:100px" bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope |
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2|t0,1,3{4,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams
|colspan=2|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|4-faces
|202 |10 {{CDD|node_1|4|node_1|3|node|3|node_1}} File:Schlegel half-solid runcitruncated 8-cell.png |
bgcolor=#e7dcc3|Cells
|1560 |40 {{CDD|node_1|4|node_1|3|node}} File:Uniform polyhedron-43-t01.png |
bgcolor=#e7dcc3|Faces
|3760 |240 {{CDD|node_1|4|node_1}} File:Regular octagon.svg |
bgcolor=#e7dcc3|Edges
|3360 |480+960+1920 |
bgcolor=#e7dcc3|Vertices
|colspan=2|960 |
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px |
bgcolor=#e7dcc3|Coxeter group
|colspan=2|B5, [3,3,3,4] |
bgcolor=#e7dcc3|Properties
|colspan=2|convex |
= Alternate names=
- Runcitruncated penteract
- Prismatotruncated penteract (Acronym: pattin) (Jonathan Bowers)
=Construction and coordinates=
The Cartesian coordinates of the vertices of a runcitruncated 5-cube having edge length 2 are all permutations of:
:
= Images =
{{5-cube Coxeter plane graphs|t013|150}}
Runcicantellated 5-cube
class="wikitable" align="right" style="margin-left:10px" width="290" |
bgcolor=#e7dcc3 align=center colspan=3|Runcicantellated 5-cube |
style="width:100px" bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope |
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2| t0,2,3{4,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|4-faces
|202 |10 {{CDD|node_1|4|node|3|node_1|3|node_1}} File:Runcitruncated_16-cell.png |
bgcolor=#e7dcc3|Cells
|1240 |40 {{CDD|node_1|4|node|3|node_1}} File:Uniform polyhedron-43-t02.png |
bgcolor=#e7dcc3|Faces
|2960 |240 {{CDD|node_1|4|node}} File:Regular quadrilateral.svg |
bgcolor=#e7dcc3|Edges
|2880 |960+960+960 |
bgcolor=#e7dcc3|Vertices
|colspan=2|960 |
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px |
bgcolor=#e7dcc3|Coxeter group
|colspan=2| B5 [4,3,3,3] |
bgcolor=#e7dcc3|Properties
|colspan=2|convex |
= Alternate names =
- Runcicantellated penteract
- Prismatorhombated penteract (Acronym: prin) (Jonathan Bowers)
= Coordinates =
The Cartesian coordinates of the vertices of a runcicantellated 5-cube having edge length 2 are all permutations of:
:
= Images =
{{5-cube Coxeter plane graphs|t023|150}}
{{anchor|Gippin}} Runcicantitruncated 5-cube
class="wikitable" align="right" style="margin-left:10px" width="280" | |
bgcolor=#e7dcc3 align=center colspan=3|Runcicantitruncated 5-cube | |
bgcolor=#e7dcc3|Type | |
bgcolor=#e7dcc3|Schläfli symbol
|t0,1,2,3{4,3,3,3} | |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram |{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node}} | |
bgcolor=#e7dcc3|4-faces | 202 |
bgcolor=#e7dcc3|Cells | 1560 |
bgcolor=#e7dcc3|Faces | 4240 |
bgcolor=#e7dcc3|Edges | 4800 |
bgcolor=#e7dcc3|Vertices | 1920 |
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px | |
bgcolor=#e7dcc3|Coxeter group
|colspan=2| B5 [4,3,3,3] | |
bgcolor=#e7dcc3|Properties |
= Alternate names =
- Runcicantitruncated penteract
- Biruncicantitruncated pentacross
- great prismated penteract ({{not a typo|gippin}}) (Jonathan Bowers)
= Coordinates =
The Cartesian coordinates of the vertices of a runcicantitruncated 5-cube having an edge length of 2 are given by all permutations of coordinates and sign of:
:
= Images =
{{5-cube Coxeter plane graphs|t0123|150}}
Related polytopes
These polytopes are a part of a set of 31 uniform polytera generated from the regular 5-cube or 5-orthoplex.
{{Penteract family}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} o3x3o3o4x - span, o3x3o3x4x - pattin, o3x3x3o4x - prin, o3x3x3x4x - gippin
External links
- {{PolyCell | urlname = glossary.html#simplex| title = Glossary for hyperspace}}
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions], Jonathan Bowers
- [http://www.polytope.net/hedrondude/truncates5.htm Runcinated uniform polytera] (spid), Jonathan Bowers
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}