Runcinated 5-cubes#Runcinated 5-cube

class=wikitable align=right width=450 style="margin-left:1em;"
align=center valign=top

|150px
5-cube
{{CDD|node_1|4|node|3|node|3|node|3|node}}

|150px
Runcinated 5-cube
{{CDD|node_1|4|node|3|node|3|node_1|3|node}}

|150px
Runcinated 5-orthoplex
{{CDD|node|4|node_1|3|node|3|node|3|node_1}}

align=center valign=top

|150px
Runcitruncated 5-cube
{{CDD|node_1|4|node_1|3|node|3|node_1|3|node}}

|150px
Runcicantellated 5-cube
{{CDD|node_1|4|node|3|node_1|3|node_1|3|node}}

|150px
Runcicantitruncated 5-cube
{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node}}

align=center valign=top

|150px
Runcitruncated 5-orthoplex
{{CDD|node|4|node_1|3|node|3|node_1|3|node_1}}

|150px
Runcicantellated 5-orthoplex
{{CDD|node|4|node_1|3|node_1|3|node|3|node_1}}

|150px
Runcicantitruncated 5-orthoplex
{{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1}}

colspan=3|Orthogonal projections in B5 Coxeter plane

In five-dimensional geometry, a runcinated 5-cube is a convex uniform 5-polytope that is a runcination (a 3rd order truncation) of the regular 5-cube.

There are 8 unique degrees of runcinations of the 5-cube, along with permutations of truncations and cantellations. Four are more simply constructed relative to the 5-orthoplex.

{{TOC left}}

{{-}}

Runcinated 5-cube

class="wikitable" align="right" style="margin-left:10px" width="290"
bgcolor=#e7dcc3 align=center colspan=3|Runcinated 5-cube
style="width:100px" bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2| t0,3{4,3,3,3}

bgcolor=#e7dcc3|Coxeter diagram

|colspan=2|{{CDD|node_1|4|node|3|node|3|node_1|3|node}}

bgcolor=#e7dcc3|4-faces

|202

|10 {{CDD|node_1|4|node|3|node|3|node_1}} File:Schlegel_half-solid_runcinated_8-cell.png
80 {{CDD|node_1|4|node|2|node_1|3|node}} File:4-3_duoprism.png
80 {{CDD|node_1|2|node|3|node_1|3|node}} File:Triangular_antiprismatic_prism.png
32 {{CDD|node|3|node|3|node_1|3|node}} File:Schlegel_half-solid_rectified_5-cell.png

bgcolor=#e7dcc3|Cells

|1240

|40 {{CDD|node_1|4|node|3|node}} File:Uniform polyhedron-43-t0.png
240 {{CDD|node_1|4|node|2|node_1}} File:Tetragonal prism.png
320 {{CDD|node_1|2|node|3|node_1}} File:Triangular prism wedge.png
160 {{CDD|node|3|node|3|node_1}} File:Uniform polyhedron-33-t0.png
320 {{CDD|node_1|2|node_1|3|node}} File:Triangular prism wedge.png
160 {{CDD|node|3|node_1|3|node}} File:Uniform polyhedron-33-t1.svg

bgcolor=#e7dcc3|Faces

|2160

|240 {{CDD|node_1|4|node}} File:Regular quadrilateral.svg
960 {{CDD|node_1|2|node_1}} File:Regular quadrilateral.svg
640 {{CDD|node|3|node_1}} File:Regular triangle.svg
320 {{CDD|node_1|3|node}} File:Regular triangle.svg

bgcolor=#e7dcc3|Edges

|1440

|480+960

bgcolor=#e7dcc3|Vertices

|colspan=2|320

bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px

bgcolor=#e7dcc3|Coxeter group

|colspan=2| B5 [4,3,3,3]

bgcolor=#e7dcc3|Properties

|colspan=2|convex

= Alternate names =

  • Small prismated penteract (Acronym: span) (Jonathan Bowers)

= Coordinates =

The Cartesian coordinates of the vertices of a runcinated 5-cube having edge length 2 are all permutations of:

:\left(\pm1,\ \pm1,\ \pm1,\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2})\right)

= Images =

{{5-cube Coxeter plane graphs|t03|150}}




Runcitruncated 5-cube

class="wikitable" align="right" style="margin-left:10px" width="290"

!bgcolor=#e7dcc3 colspan=3|Runcitruncated 5-cube

style="width:100px" bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2|t0,1,3{4,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin diagrams

|colspan=2|{{CDD|node_1|4|node_1|3|node|3|node_1|3|node}}

bgcolor=#e7dcc3|4-faces

|202

|10 {{CDD|node_1|4|node_1|3|node|3|node_1}} File:Schlegel half-solid runcitruncated 8-cell.png
80 {{CDD|node_1|4|node_1|2|node_1|3|node}} File:3-8 duoprism.png
80 {{CDD|node_1|2|node|3|node_1|3|node}} File:Triangular_antiprismatic_prism.png
32 {{CDD|node_1|3|node|3|node_1|3|node}} File:Schlegel_half-solid_cantellated_5-cell.png

bgcolor=#e7dcc3|Cells

|1560

|40 {{CDD|node_1|4|node_1|3|node}} File:Uniform polyhedron-43-t01.png
240 {{CDD|node_1|4|node_1|2|node_1}} File:Octagonal_prism.png
320 {{CDD|node_1|2|node|3|node_1}} File:Triangular prism wedge.png
320 {{CDD|node_1|2|node_1|3|node}} File:Triangular prism wedge.png
160 {{CDD|node_1|3|node|3|node_1}} File:Uniform polyhedron-33-t02.svg
320 {{CDD|node_1|2|node_1|3|node}} File:Triangular prism wedge.png
160 {{CDD|node|3|node_1|3|node}} File:Uniform polyhedron-33-t1.svg

bgcolor=#e7dcc3|Faces

|3760

|240 {{CDD|node_1|4|node_1}} File:Regular octagon.svg
960 {{CDD|node_1|2|node_1}} File:Regular quadrilateral.svg
320 {{CDD|node_1|3|node}} File:Regular triangle.svg
960 {{CDD|node_1|2|node_1}} File:Regular quadrilateral.svg
640 {{CDD|node|3|node_1}} File:Regular triangle.svg
640 {{CDD|node_1|3|node}} File:Regular triangle.svg

bgcolor=#e7dcc3|Edges

|3360

|480+960+1920

bgcolor=#e7dcc3|Vertices

|colspan=2|960

bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px

bgcolor=#e7dcc3|Coxeter group

|colspan=2|B5, [3,3,3,4]

bgcolor=#e7dcc3|Properties

|colspan=2|convex

= Alternate names=

  • Runcitruncated penteract
  • Prismatotruncated penteract (Acronym: pattin) (Jonathan Bowers)

=Construction and coordinates=

The Cartesian coordinates of the vertices of a runcitruncated 5-cube having edge length 2 are all permutations of:

:\left(\pm1,\ \pm(1+\sqrt{2}),\ \pm(1+\sqrt{2}),\ \pm(1+2\sqrt{2}),\ \pm(1+2\sqrt{2})\right)

= Images =

{{5-cube Coxeter plane graphs|t013|150}}





Runcicantellated 5-cube

class="wikitable" align="right" style="margin-left:10px" width="290"
bgcolor=#e7dcc3 align=center colspan=3|Runcicantellated 5-cube
style="width:100px" bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2| t0,2,3{4,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD|node_1|4|node|3|node_1|3|node_1|3|node}}

bgcolor=#e7dcc3|4-faces

|202

|10 {{CDD|node_1|4|node|3|node_1|3|node_1}} File:Runcitruncated_16-cell.png
80 {{CDD|node_1|4|node|2|node_1|3|node}} File:4-3_duoprism.png
80 {{CDD|node_1|2|node_1|3|node_1|3|node}} File:Truncated_tetrahedral_prism.png
32 {{CDD|node|3|node_1|3|node_1|3|node}} File:Schlegel half-solid bitruncated 5-cell.png

bgcolor=#e7dcc3|Cells

|1240

|40 {{CDD|node_1|4|node|3|node_1}} File:Uniform polyhedron-43-t02.png
240 {{CDD|node_1|4|node|2|node_1}} File:Tetragonal prism.png
320 {{CDD|node_1|2|node_1|3|node_1}} File:Hexagonal prism.png
320 {{CDD|node_1|2|node_1|3|node}} File:Triangular prism wedge.png
160 {{CDD|node|3|node_1|3|node_1}} File:Uniform polyhedron-33-t01.png
160 {{CDD|node_1|3|node_1|3|node}} File:Uniform polyhedron-33-t01.png

bgcolor=#e7dcc3|Faces

|2960

|240 {{CDD|node_1|4|node}} File:Regular quadrilateral.svg
480 {{CDD|node_1|2|node_1}} File:Regular quadrilateral.svg
960 {{CDD|node_1|2|node_1}} File:Regular quadrilateral.svg
320 {{CDD|node|3|node_1}} File:Regular triangle.svg
640 {{CDD|node_1|3|node_1}} File:Regular hexagon.svg
320 {{CDD|node_1|3|node}} File:Regular triangle.svg

bgcolor=#e7dcc3|Edges

|2880

|960+960+960

bgcolor=#e7dcc3|Vertices

|colspan=2|960

bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px

bgcolor=#e7dcc3|Coxeter group

|colspan=2| B5 [4,3,3,3]

bgcolor=#e7dcc3|Properties

|colspan=2|convex

= Alternate names =

  • Runcicantellated penteract
  • Prismatorhombated penteract (Acronym: prin) (Jonathan Bowers)

= Coordinates =

The Cartesian coordinates of the vertices of a runcicantellated 5-cube having edge length 2 are all permutations of:

:\left(\pm1,\ \pm1,\ \pm(1+\sqrt{2}),\ \pm(1+2\sqrt{2}),\ \pm(1+2\sqrt{2})\right)

= Images =

{{5-cube Coxeter plane graphs|t023|150}}





{{anchor|Gippin}} Runcicantitruncated 5-cube

class="wikitable" align="right" style="margin-left:10px" width="280"
bgcolor=#e7dcc3 align=center colspan=3|Runcicantitruncated 5-cube
bgcolor=#e7dcc3|Type

|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|t0,1,2,3{4,3,3,3}

bgcolor=#e7dcc3|Coxeter-Dynkin
diagram

|{{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node}}

bgcolor=#e7dcc3|4-faces202
bgcolor=#e7dcc3|Cells1560
bgcolor=#e7dcc3|Faces4240
bgcolor=#e7dcc3|Edges4800
bgcolor=#e7dcc3|Vertices1920
bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px
Irregular 5-cell

bgcolor=#e7dcc3|Coxeter group

|colspan=2| B5 [4,3,3,3]

bgcolor=#e7dcc3|Properties

|convex, isogonal

= Alternate names =

  • Runcicantitruncated penteract
  • Biruncicantitruncated pentacross
  • great prismated penteract ({{not a typo|gippin}}) (Jonathan Bowers)

= Coordinates =

The Cartesian coordinates of the vertices of a runcicantitruncated 5-cube having an edge length of 2 are given by all permutations of coordinates and sign of:

:\left(1,\ 1+\sqrt{2},\ 1+2\sqrt{2},\ 1+3\sqrt{2},\ 1+3\sqrt{2}\right)

= Images =

{{5-cube Coxeter plane graphs|t0123|150}}

Related polytopes

These polytopes are a part of a set of 31 uniform polytera generated from the regular 5-cube or 5-orthoplex.

{{Penteract family}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} o3x3o3o4x - span, o3x3o3x4x - pattin, o3x3x3o4x - prin, o3x3x3x4x - gippin