Runcinated 5-orthoplexes#Runcicantitruncated 5-orthoplex
class=wikitable style="float:right; margin-left:8px; width:450px" |
align=center valign=top
|150px |150px |150px |
align=center valign=top
|150px |150px |150px |
align=center valign=top
|150px |150px |150px |
colspan=3|Orthogonal projections in B5 Coxeter plane |
---|
In five-dimensional geometry, a runcinated 5-orthoplex is a convex uniform 5-polytope with 3rd order truncation (runcination) of the regular 5-orthoplex.
There are 8 runcinations of the 5-orthoplex with permutations of truncations, and cantellations. Four are more simply constructed relative to the 5-cube.
{{TOC left}}
{{-}}
Runcinated 5-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:250px" | ||||
bgcolor=#e7dcc3 align=center colspan=3|Runcinated 5-orthoplex | ||||
bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope | ||||
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2| t0,3{3,3,3,4} | ||||
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD | node_1|3|node | 3|node|3|node_1|4|node}} {{CDD | node_1|3|node | 3|node|split1|nodes_11}} |
bgcolor=#e7dcc3|4-faces
|162 | ||||
bgcolor=#e7dcc3|Cells
|1200 | ||||
bgcolor=#e7dcc3|Faces
|2160 | ||||
bgcolor=#e7dcc3|Edges
|colspan=2|1440 | ||||
bgcolor=#e7dcc3|Vertices
|colspan=2|320 | ||||
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px | ||||
bgcolor=#e7dcc3|Coxeter group
|colspan=2| B5 [4,3,3,3] | ||||
bgcolor=#e7dcc3|Properties
|colspan=2|convex |
=Alternate names=
- Runcinated pentacross
- Small prismated triacontiditeron (Acronym: spat) (Jonathan Bowers)Klitzing, (x3o3o3x4o - spat)
=Coordinates=
The vertices of the can be made in 5-space, as permutations and sign combinations of:
: (0,1,1,1,2)
=Images=
{{5-cube Coxeter plane graphs|t14|150}}
Runcitruncated 5-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:250px"
!bgcolor=#e7dcc3 colspan=2|Runcitruncated 5-orthoplex | |
bgcolor=#e7dcc3|Type | uniform 5-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,3{3,3,3,4} t0,1,3{3,31,1} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node_1|3|node|3|node_1|3|node_1}} {{CDD|nodes_11|split2|node|3|node_1|3|node_1}} |
bgcolor=#e7dcc3|4-faces | 162 |
bgcolor=#e7dcc3|Cells | 1440 |
bgcolor=#e7dcc3|Faces | 3680 |
bgcolor=#e7dcc3|Edges | 3360 |
bgcolor=#e7dcc3|Vertices | 960 |
bgcolor=#e7dcc3|Vertex figure | 80px |
bgcolor=#e7dcc3|Coxeter groups | B5, [3,3,3,4] D5, [32,1,1] |
bgcolor=#e7dcc3|Properties | convex |
=Alternate names=
- Runcitruncated pentacross
- Prismatotruncated triacontiditeron (Acronym: pattit) (Jonathan Bowers)Klitzing, (x3x3o3x4o - pattit)
=Coordinates=
Cartesian coordinates for the vertices of a runcitruncated 5-orthoplex, centered at the origin, are all 80 vertices are sign (4) and coordinate (20) permutations of
: (±3,±2,±1,±1,0)
=Images=
{{5-cube Coxeter plane graphs|t134|150}}
Runcicantellated 5-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:250px" | ||||
bgcolor=#e7dcc3 align=center colspan=3|Runcicantellated 5-orthoplex | ||||
bgcolor=#e7dcc3|Type
|colspan=2|Uniform 5-polytope | ||||
bgcolor=#e7dcc3|Schläfli symbol
|colspan=2| t0,2,3{3,3,3,4} | ||||
bgcolor=#e7dcc3|Coxeter-Dynkin diagram
|colspan=2|{{CDD | node_1|3|node | 3|node_1|3|node_1|4|node}} {{CDD | node_1|3|node | 3|node_1|split1|nodes_11}} |
bgcolor=#e7dcc3|4-faces | 162 | |||
bgcolor=#e7dcc3|Cells | 1200 | |||
bgcolor=#e7dcc3|Faces | 2960 | |||
bgcolor=#e7dcc3|Edges | 2880 | |||
bgcolor=#e7dcc3|Vertices | 960 | |||
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px | ||||
bgcolor=#e7dcc3|Coxeter group
|colspan=2| B5 [4,3,3,3] | ||||
bgcolor=#e7dcc3|Properties
|colspan=2|convex |
=Alternate names=
- Runcicantellated pentacross
- Prismatorhombated triacontiditeron (Acronym: pirt) (Jonathan Bowers)Klitzing, (x3o3x3x4o - pirt)
=Coordinates=
The vertices of the runcicantellated 5-orthoplex can be made in 5-space, as permutations and sign combinations of:
: (0,1,2,2,3)
=Images=
{{5-cube Coxeter plane graphs|t124|150}}
Runcicantitruncated 5-orthoplex
class="wikitable" style="float:right; margin-left:8px; width:280px" | |
bgcolor=#e7dcc3 align=center colspan=3|Runcicantitruncated 5-orthoplex | |
bgcolor=#e7dcc3|Type | |
bgcolor=#e7dcc3|Schläfli symbol
|t0,1,2,3{3,3,3,4} | |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram |{{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1}} | |
bgcolor=#e7dcc3|4-faces | 162 |
bgcolor=#e7dcc3|Cells | 1440 |
bgcolor=#e7dcc3|Faces | 4160 |
bgcolor=#e7dcc3|Edges | 4800 |
bgcolor=#e7dcc3|Vertices | 1920 |
bgcolor=#e7dcc3|Vertex figure
|colspan=2|80px | |
bgcolor=#e7dcc3|Coxeter groups
|colspan=2| B5 [4,3,3,3] | |
bgcolor=#e7dcc3|Properties |
=Alternate names=
- Runcicantitruncated pentacross
- Great prismated triacontiditeron (gippit) (Jonathan Bowers)Klitzing, (x3x3x3x4o - gippit)
=Coordinates=
The Cartesian coordinates of the vertices of a runcicantitruncated 5-orthoplex having an edge length of {{radic|2}} are given by all permutations of coordinates and sign of:
:
=Images=
{{5-cube Coxeter plane graphs|t1234|150}}
=Snub 5-demicube=
The snub 5-demicube defined as an alternation of the omnitruncated 5-demicube is not uniform, but it can be given Coxeter diagram {{CDD|nodes_hh|split2|node_h|3|node_h|3|node_h}} or {{CDD|node|4|node_h|3|node_h|3|node_h|3|node_h}} and symmetry [32,1,1]+ or [4,(3,3,3)+], and constructed from 10 snub 24-cells, 32 snub 5-cells, 40 snub tetrahedral antiprisms, 80 2-3 duoantiprisms, and 960 irregular 5-cells filling the gaps at the deleted vertices.
Related polytopes
This polytope is one of 31 uniform 5-polytopes generated from the regular 5-cube or 5-orthoplex.
{{Penteract family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} x3o3o3x4o - spat, x3x3o3x4o - pattit, x3o3x3x4o - pirt, x3x3x3x4o - gippit
External links
- {{PolyCell | urlname = glossary.html#simplex| title = Glossary for hyperspace}}
- [http://www.polytope.net/hedrondude/topes.htm Polytopes of Various Dimensions], Jonathan Bowers
- [http://www.polytope.net/hedrondude/truncates5.htm Runcinated uniform polytera] (spid), Jonathan Bowers
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}