Runcinated 5-orthoplexes#Runcicantitruncated 5-orthoplex

class=wikitable style="float:right; margin-left:8px; width:450px"
align=center valign=top

|150px
5-orthoplex
{{CDD|node_1|3|node|3|node|3|node|4|node}}

|150px
Runcinated 5-orthoplex
{{CDD|node_1|3|node|3|node|3|node_1|4|node}}

|150px
Runcinated 5-cube
{{CDD|node|3|node_1|3|node|3|node|4|node_1}}

align=center valign=top

|150px
Runcitruncated 5-orthoplex
{{CDD|node_1|3|node_1|3|node|3|node_1|4|node}}

|150px
Runcicantellated 5-orthoplex
{{CDD|node_1|3|node|3|node_1|3|node_1|4|node}}

|150px
Runcicantitruncated 5-orthoplex
{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node}}

align=center valign=top

|150px
Runcitruncated 5-cube
{{CDD|node|3|node_1|3|node|3|node_1|4|node_1}}

|150px
Runcicantellated 5-cube
{{CDD|node|3|node_1|3|node_1|3|node|4|node_1}}

|150px
Runcicantitruncated 5-cube
{{CDD|node|3|node_1|3|node_1|3|node_1|4|node_1}}

colspan=3|Orthogonal projections in B5 Coxeter plane

In five-dimensional geometry, a runcinated 5-orthoplex is a convex uniform 5-polytope with 3rd order truncation (runcination) of the regular 5-orthoplex.

There are 8 runcinations of the 5-orthoplex with permutations of truncations, and cantellations. Four are more simply constructed relative to the 5-cube.

{{TOC left}}

{{-}}

Runcinated 5-orthoplex

class="wikitable" style="float:right; margin-left:8px; width:250px"
bgcolor=#e7dcc3 align=center colspan=3|Runcinated 5-orthoplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2| t0,3{3,3,3,4}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node_1|3|node3|node|3|node_1|4|node}}
{{CDD
node_1|3|node3|node|split1|nodes_11}}
bgcolor=#e7dcc3|4-faces

|162

bgcolor=#e7dcc3|Cells

|1200

bgcolor=#e7dcc3|Faces

|2160

bgcolor=#e7dcc3|Edges

|colspan=2|1440

bgcolor=#e7dcc3|Vertices

|colspan=2|320

bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px

bgcolor=#e7dcc3|Coxeter group

|colspan=2| B5 [4,3,3,3]
D5 [32,1,1]

bgcolor=#e7dcc3|Properties

|colspan=2|convex

=Alternate names=

  • Runcinated pentacross
  • Small prismated triacontiditeron (Acronym: spat) (Jonathan Bowers)Klitzing, (x3o3o3x4o - spat)

=Coordinates=

The vertices of the can be made in 5-space, as permutations and sign combinations of:

: (0,1,1,1,2)

=Images=

{{5-cube Coxeter plane graphs|t14|150}}

Runcitruncated 5-orthoplex

class="wikitable" style="float:right; margin-left:8px; width:250px"

!bgcolor=#e7dcc3 colspan=2|Runcitruncated 5-orthoplex

bgcolor=#e7dcc3|Typeuniform 5-polytope
bgcolor=#e7dcc3|Schläfli symbolt0,1,3{3,3,3,4}
t0,1,3{3,31,1}
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams{{CDD|node|4|node_1|3|node|3|node_1|3|node_1}}
{{CDD|nodes_11|split2|node|3|node_1|3|node_1}}
bgcolor=#e7dcc3|4-faces162
bgcolor=#e7dcc3|Cells1440
bgcolor=#e7dcc3|Faces3680
bgcolor=#e7dcc3|Edges3360
bgcolor=#e7dcc3|Vertices960
bgcolor=#e7dcc3|Vertex figure80px
bgcolor=#e7dcc3|Coxeter groupsB5, [3,3,3,4]
D5, [32,1,1]
bgcolor=#e7dcc3|Propertiesconvex

=Alternate names=

  • Runcitruncated pentacross
  • Prismatotruncated triacontiditeron (Acronym: pattit) (Jonathan Bowers)Klitzing, (x3x3o3x4o - pattit)

=Coordinates=

Cartesian coordinates for the vertices of a runcitruncated 5-orthoplex, centered at the origin, are all 80 vertices are sign (4) and coordinate (20) permutations of

: (±3,±2,±1,±1,0)

=Images=

{{5-cube Coxeter plane graphs|t134|150}}

Runcicantellated 5-orthoplex

class="wikitable" style="float:right; margin-left:8px; width:250px"
bgcolor=#e7dcc3 align=center colspan=3|Runcicantellated 5-orthoplex
bgcolor=#e7dcc3|Type

|colspan=2|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|colspan=2| t0,2,3{3,3,3,4}
t0,2,3{3,3,31,1}

bgcolor=#e7dcc3|Coxeter-Dynkin diagram

|colspan=2|{{CDD

node_1|3|node3|node_1|3|node_1|4|node}}
{{CDD
node_1|3|node3|node_1|split1|nodes_11}}
bgcolor=#e7dcc3|4-faces162
bgcolor=#e7dcc3|Cells1200
bgcolor=#e7dcc3|Faces2960
bgcolor=#e7dcc3|Edges2880
bgcolor=#e7dcc3|Vertices960
bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px

bgcolor=#e7dcc3|Coxeter group

|colspan=2| B5 [4,3,3,3]
D5 [32,1,1]

bgcolor=#e7dcc3|Properties

|colspan=2|convex

=Alternate names=

  • Runcicantellated pentacross
  • Prismatorhombated triacontiditeron (Acronym: pirt) (Jonathan Bowers)Klitzing, (x3o3x3x4o - pirt)

=Coordinates=

The vertices of the runcicantellated 5-orthoplex can be made in 5-space, as permutations and sign combinations of:

: (0,1,2,2,3)

=Images=

{{5-cube Coxeter plane graphs|t124|150}}

Runcicantitruncated 5-orthoplex

class="wikitable" style="float:right; margin-left:8px; width:280px"
bgcolor=#e7dcc3 align=center colspan=3|Runcicantitruncated 5-orthoplex
bgcolor=#e7dcc3|Type

|Uniform 5-polytope

bgcolor=#e7dcc3|Schläfli symbol

|t0,1,2,3{3,3,3,4}

bgcolor=#e7dcc3|Coxeter-Dynkin
diagram

|{{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1}}
{{CDD|nodes_11|split2|node_1|3|node_1|3|node_1}}

bgcolor=#e7dcc3|4-faces162
bgcolor=#e7dcc3|Cells1440
bgcolor=#e7dcc3|Faces4160
bgcolor=#e7dcc3|Edges4800
bgcolor=#e7dcc3|Vertices1920
bgcolor=#e7dcc3|Vertex figure

|colspan=2|80px
Irregular 5-cell

bgcolor=#e7dcc3|Coxeter groups

|colspan=2| B5 [4,3,3,3]
D5 [32,1,1]

bgcolor=#e7dcc3|Properties

|convex, isogonal

=Alternate names=

  • Runcicantitruncated pentacross
  • Great prismated triacontiditeron (gippit) (Jonathan Bowers)Klitzing, (x3x3x3x4o - gippit)

=Coordinates=

The Cartesian coordinates of the vertices of a runcicantitruncated 5-orthoplex having an edge length of {{radic|2}} are given by all permutations of coordinates and sign of:

:\left(0, 1, 2, 3, 4\right)

=Images=

{{5-cube Coxeter plane graphs|t1234|150}}

=Snub 5-demicube=

The snub 5-demicube defined as an alternation of the omnitruncated 5-demicube is not uniform, but it can be given Coxeter diagram {{CDD|nodes_hh|split2|node_h|3|node_h|3|node_h}} or {{CDD|node|4|node_h|3|node_h|3|node_h|3|node_h}} and symmetry [32,1,1]+ or [4,(3,3,3)+], and constructed from 10 snub 24-cells, 32 snub 5-cells, 40 snub tetrahedral antiprisms, 80 2-3 duoantiprisms, and 960 irregular 5-cells filling the gaps at the deleted vertices.

Related polytopes

This polytope is one of 31 uniform 5-polytopes generated from the regular 5-cube or 5-orthoplex.

{{Penteract family}}

Notes

{{reflist}}

References

  • H.S.M. Coxeter:
  • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • {{KlitzingPolytopes|polytera.htm|5D|uniform polytopes (polytera)}} x3o3o3x4o - spat, x3x3o3x4o - pattit, x3o3x3x4o - pirt, x3x3x3x4o - gippit