Runcinated 6-cubes#Runcicantitruncated 6-cube
class=wikitable align=right width=400 style="margin-left:1em;" |
align=center valign=top
|80px |80px |80px |80px |80px |
align=center valign=top
|80px |80px |80px |80px |80px |
align=center valign=top
|80px |80px |80px |80px |
colspan=5|Orthogonal projections in B6 Coxeter plane |
---|
In six-dimensional geometry, a runcinated 6-cube is a convex uniform 6-polytope with 3rd order truncations (runcination) of the regular 6-cube.
There are 12 unique runcinations of the 6-cube with permutations of truncations, and cantellations. 5 are expressed relative to the dual 6-orthoplex.
Runcinated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250" | |
bgcolor=#e7dcc3 align=center colspan=2|Runcinated 6-cube | |
bgcolor=#e7dcc3|Type | Uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,3{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|node_1|4|node|3|node|3|node_1|3|node|3|node}} |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 7680 |
bgcolor=#e7dcc3|Vertices | 1280 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | B6 [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Small prismated hexeract (spox) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/spox.htm (o3o3x3o3o4x - spox)]}}
= Images =
{{6-cube Coxeter plane graphs|t03|150}}
Biruncinated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250" | |
bgcolor=#e7dcc3 align=center colspan=2|Biruncinated 6-cube | |
bgcolor=#e7dcc3|Type | Uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t1,4{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|node|4|node_1|3|node|3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 11520 |
bgcolor=#e7dcc3|Vertices | 1920 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | B6 [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Small biprismated hexeractihexacontatetrapeton (sobpoxog) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/sobpoxog.htm (o3x3o3o3x4o - sobpoxog)]}}
= Images =
{{6-cube Coxeter plane graphs|t14|150}}
Runcitruncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250" | |
bgcolor=#e7dcc3 align=center colspan=2|Runcitruncated 6-cube | |
bgcolor=#e7dcc3|Type | Uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,3{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|node_1|4|node_1|3|node|3|node_1|3|node|3|node}} |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 17280 |
bgcolor=#e7dcc3|Vertices | 3840 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | B6 [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Prismatotruncated hexeract (potax) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/potax.htm (o3o3x3o3x4x - potax)]}}
= Images =
{{6-cube Coxeter plane graphs|t013|150}}
Biruncitruncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250" | |
bgcolor=#e7dcc3 align=center colspan=2|Biruncitruncated 6-cube | |
bgcolor=#e7dcc3|Type | Uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t1,2,4{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|node|4|node_1|3|node_1|3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 23040 |
bgcolor=#e7dcc3|Vertices | 5760 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | B6 [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Biprismatotruncated hexeract (boprag) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/boprag.htm (o3x3o3x3x4o - boprag)]}}
= Images =
{{6-cube Coxeter plane graphs|t124|150}}
Runcicantellated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250" | |
bgcolor=#e7dcc3 align=center colspan=2|Runcicantellated 6-cube | |
bgcolor=#e7dcc3|Type | Uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,2,3{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|node_1|4|node|3|node_1|3|node_1|3|node|3|node}} |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 13440 |
bgcolor=#e7dcc3|Vertices | 3840 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | B6 [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Prismatorhombated hexeract (prox) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/prox.htm (o3o3x3x3o4x - prox)]}}
= Images =
{{6-cube Coxeter plane graphs|t023|150}}
Runcicantitruncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250" | |
bgcolor=#e7dcc3 align=center colspan=2|Runcicantitruncated 6-cube | |
bgcolor=#e7dcc3|Type | Uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,2,3{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|node_1|4|node_1|3|node_1|3|node_1|3|node|3|node}} |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 23040 |
bgcolor=#e7dcc3|Vertices | 7680 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | B6 [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Great prismated hexeract (gippox) (Jonathan Bowers)Klitzing, (o3o3x3x3x4x - gippox)
= Images =
{{6-cube Coxeter plane graphs|t0123|150}}
Biruncicantitruncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250" | |
bgcolor=#e7dcc3 align=center colspan=2|Biruncicantitruncated 6-cube | |
bgcolor=#e7dcc3|Type | Uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t1,2,3,4{4,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|node|4|node_1|3|node_1|3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 23040 |
bgcolor=#e7dcc3|Vertices | 5760 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | B6 [4,3,3,3,3] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Great biprismated hexeractihexacontitetrapeton (gobpoxog) (Jonathan Bowers)Klitzing, (o3x3x3x3x4o - gobpoxog)
= Images =
{{6-cube Coxeter plane graphs|t1234|150}}
Related polytopes
These polytopes are from a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.
{{Hexeract family}}
Notes
{{reflist}}
References
{{sfn whitelist|CITEREFKlitzing}}
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} o3o3x3o3o4x - spox, o3x3o3o3x4o - sobpoxog, o3o3x3o3x4x - potax, o3x3o3x3x4o - boprag, o3o3x3x3o4x - prox, o3o3x3x3x4x - gippox, o3x3x3x3x4o - gobpoxog
External links
- {{MathWorld|title=Hypercube|urlname=Hypercube}}
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}