Runcinated 6-simplexes#Biruncitruncated 6-simplex
class=wikitable align=right width=480 style="margin-left:1em;" |
align=center valign=top
|120px |120px |120px |
align=center valign=top
|120px |120px |120px |
align=center valign=top
|120px |120px |
colspan=3|Orthogonal projections in A6 Coxeter plane |
---|
In six-dimensional geometry, a runcinated 6-simplex is a convex uniform 6-polytope constructed as a runcination (3rd order truncations) of the regular 6-simplex.
There are 8 unique runcinations of the 6-simplex with permutations of truncations, and cantellations.
{{-}}
Runcinated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Runcinated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,3{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node}} |
bgcolor=#e7dcc3|5-faces | 70 |
bgcolor=#e7dcc3|4-faces | 455 |
bgcolor=#e7dcc3|Cells | 1330 |
bgcolor=#e7dcc3|Faces | 1610 |
bgcolor=#e7dcc3|Edges | 840 |
bgcolor=#e7dcc3|Vertices | 140 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Small prismated heptapeton (Acronym: spil) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/spil.htm (x3o3o3x3o3o - spil)]}}
= Coordinates =
The vertices of the runcinated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,1,1,2). This construction is based on facets of the runcinated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t03|150}}
Biruncinated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|biruncinated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t1,4{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node|3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | 84 |
bgcolor=#e7dcc3|4-faces | 714 |
bgcolor=#e7dcc3|Cells | 2100 |
bgcolor=#e7dcc3|Faces | 2520 |
bgcolor=#e7dcc3|Edges | 1260 |
bgcolor=#e7dcc3|Vertices | 210 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Small biprismated tetradecapeton (Acronym: sibpof) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/sibpof.htm (o3x3o3o3x3o - sibpof)]}}
= Coordinates =
The vertices of the biruncinated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,1,2,2). This construction is based on facets of the biruncinated 7-orthoplex.
= Images =
{{6-simplex2 Coxeter plane graphs|t14|150}}
Runcitruncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Runcitruncated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,3{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node|3|node_1|3|node|3|node}} |
bgcolor=#e7dcc3|5-faces | 70 |
bgcolor=#e7dcc3|4-faces | 560 |
bgcolor=#e7dcc3|Cells | 1820 |
bgcolor=#e7dcc3|Faces | 2800 |
bgcolor=#e7dcc3|Edges | 1890 |
bgcolor=#e7dcc3|Vertices | 420 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Prismatotruncated heptapeton (Acronym: patal) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/patal.htm (x3x3o3x3o3o - patal)]}}
= Coordinates =
The vertices of the runcitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,1,2,3). This construction is based on facets of the runcitruncated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t013|150}}
Biruncitruncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|biruncitruncated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t1,2,4{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node_1|3|node|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | 84 |
bgcolor=#e7dcc3|4-faces | 714 |
bgcolor=#e7dcc3|Cells | 2310 |
bgcolor=#e7dcc3|Faces | 3570 |
bgcolor=#e7dcc3|Edges | 2520 |
bgcolor=#e7dcc3|Vertices | 630 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Biprismatorhombated heptapeton (Acronym: bapril) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/bapril.htm (o3x3x3o3x3o - bapril)]}}
= Coordinates =
The vertices of the biruncitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,1,2,3,3). This construction is based on facets of the biruncitruncated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t124|150}}
Runcicantellated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Runcicantellated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,2,3{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node_1|3|node_1|3|node|3|node}} |
bgcolor=#e7dcc3|5-faces | 70 |
bgcolor=#e7dcc3|4-faces | 455 |
bgcolor=#e7dcc3|Cells | 1295 |
bgcolor=#e7dcc3|Faces | 1960 |
bgcolor=#e7dcc3|Edges | 1470 |
bgcolor=#e7dcc3|Vertices | 420 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Prismatorhombated heptapeton (Acronym: pril) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/pril.htm (x3o3x3x3o3o - pril)]}}
= Coordinates =
The vertices of the runcicantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,2,3). This construction is based on facets of the runcicantellated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t023|150}}
Runcicantitruncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Runcicantitruncated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t0,1,2,3{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}} |
bgcolor=#e7dcc3|5-faces | 70 |
bgcolor=#e7dcc3|4-faces | 560 |
bgcolor=#e7dcc3|Cells | 1820 |
bgcolor=#e7dcc3|Faces | 3010 |
bgcolor=#e7dcc3|Edges | 2520 |
bgcolor=#e7dcc3|Vertices | 840 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Runcicantitruncated heptapeton
- Great prismated heptapeton (Acronym: gapil) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/gapil.htm (x3x3x3x3o3o - gapil)]}}
= Coordinates =
The vertices of the runcicantitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,4). This construction is based on facets of the runcicantitruncated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t0123|150}}
Biruncicantitruncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|biruncicantitruncated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | t1,2,3,4{3,3,3,3,3} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}} |
bgcolor=#e7dcc3|5-faces | 84 |
bgcolor=#e7dcc3|4-faces | 714 |
bgcolor=#e7dcc3|Cells | 2520 |
bgcolor=#e7dcc3|Faces | 4410 |
bgcolor=#e7dcc3|Edges | 3780 |
bgcolor=#e7dcc3|Vertices | 1260 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Biruncicantitruncated heptapeton
- Great biprismated tetradecapeton (Acronym: gibpof) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/gibpof.htm (o3x3x3x3x3o - gibpof)]}}
= Coordinates =
The vertices of the biruncicantittruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,1,2,3,4,4). This construction is based on facets of the biruncicantitruncated 7-orthoplex.
= Images =
{{6-simplex2 Coxeter plane graphs|t1234|150}}
Related uniform 6-polytopes
The truncated 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.
{{Heptapeton family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} x3o3o3x3o3o - spil, o3x3o3o3x3o - sibpof, x3x3o3x3o3o - patal, o3x3x3o3x3o - bapril, x3o3x3x3o3o - pril, x3x3x3x3o3o - gapil, o3x3x3x3x3o - gibpof {{sfn whitelist| CITEREFKlitzing}}
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}