Runcinated 8-simplexes#Runcicantellated 8-simplex
class=wikitable align=right width=400 style="margin-left:1em;" |
align=center
|100px |100px |100px |100px |
align=center
|100px |100px |100px |100px |
align=center
|100px |100px |100px |100px |
colspan=4|Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a runcinated 8-simplex is a convex uniform 8-polytope with 3rd order truncations (runcination) of the regular 8-simplex.
There are eleven unique runcinations of the 8-simplex, including permutations of truncation and cantellation. The triruncinated 8-simplex and triruncicanti{{wbr}}truncated 8-simplex have a doubled symmetry, showing [18] order reflectional symmetry in the A8 Coxeter plane.
Runcinated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Runcinated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t0,3{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 4536 |
style="background:#e7dcc3;"|Vertices | 504 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
=Alternate names =
- Runcinated enneazetton
- Small prismated enneazetton (Acronym: spene) (Jonathan Bowers)Klitzing (x3o3o3x3o3o3o3o - spene)
= Coordinates =
The Cartesian coordinates of the vertices of the runcinated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,1,2). This construction is based on facets of the runcinated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t03|120}}
Biruncinated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Biruncinated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t1,4{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagram | {{CDD|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 11340 |
style="background:#e7dcc3;"|Vertices | 1260 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
=Alternate names =
- Biruncinated enneazetton
- Small biprismated enneazetton (Acronym: sabpene) (Jonathan Bowers)Klitzing (o3x3o3o3x3o3o3o - sabpene)
= Coordinates =
The Cartesian coordinates of the vertices of the biruncinated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,1,1,2,2). This construction is based on facets of the biruncinated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t14|120}}
Triruncinated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Triruncinated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t2,5{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagrams | {{CDD|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 15120 |
style="background:#e7dcc3;"|Vertices | 1680 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A8×2, |
style="background:#e7dcc3;"|Properties | convex |
=Alternate names =
- Triruncinated enneazetton
- Small triprismated enneazetton (Acronym: satpeb) (Jonathan Bowers)Klitzing (o3o3x3o3o3x3o3o - satpeb)
= Coordinates =
The Cartesian coordinates of the vertices of the triruncinated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,1,1,1,2,2,2). This construction is based on facets of the triruncinated 9-orthoplex.
= Images =
{{8-simplex2 Coxeter plane graphs|t25|120}}
Runcitruncated 8-simplex
{{CDD|node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node|3|node}}
= Images =
{{8-simplex2 Coxeter plane graphs|t013|120}}
Biruncitruncated 8-simplex
{{CDD|node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node|3|node}}
= Images =
{{8-simplex2 Coxeter plane graphs|t124|120}}
Triruncitruncated 8-simplex
{{CDD|node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node}}
= Images =
{{8-simplex2 Coxeter plane graphs|t235|120}}
Runcicantellated 8-simplex
{{CDD|node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node}}
= Images =
{{8-simplex2 Coxeter plane graphs|t023|120}}
Biruncicantellated 8-simplex
{{CDD|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node|3|node}}
= Images =
{{8-simplex2 Coxeter plane graphs|t134|120}}
Runcicantitruncated 8-simplex
{{CDD|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node|3|node}}
= Images =
{{8-simplex2 Coxeter plane graphs|t0123|120}}
Biruncicantitruncated 8-simplex
{{CDD|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node}}
= Images =
{{8-simplex2 Coxeter plane graphs|t1234|120}}
Triruncicantitruncated 8-simplex
{{CDD|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}}
= Images =
{{8-simplex2 Coxeter plane graphs|t2345|120}}
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
{{Enneazetton family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyzetta.htm|8D|uniform polytopes (polyzetta)}} x3o3o3x3o3o3o3o - spene, o3x3o3o3x3o3o3o - sabpene, o3o3x3o3o3x3o3o - satpeb
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}