Russell Keanini
{{Short description|American mechanical engineer}}
{{Infobox academic
| name = Russell Keanini
| image =
| birth_date =
| birth_place =
| nationality = American
| occupation = Mechanical engineer, mathematician, physicist, and academic
| title =
| awards =
| website =
| education = Colorado School of Mines
University of Colorado Denver
University of California at Berkeley
| thesis_title = Numerical and analytical studies of phase change processes
| thesis_url =
| thesis_year = 1992
| doctoral_advisor =
| workplaces = University of North Carolina at Charlotte
}}
Russell Keanini is an American mechanical engineer, mathematician, physicist, and academic. He is a professor of Mechanical Engineering and Engineering Science at the William States Lee College of Engineering of the University of North Carolina at Charlotte.{{Cite web|url=https://mees.charlotte.edu/directory/russell-keanini|title=Russell Keanini | Mechanical Engineering and Engineering Science | UNC Charlotte|website=mees.charlotte.edu}} He is the recipient of the 2020 Kirk Bryan Award for his contributions to the field of Quaternary geology.{{Cite web|url=https://community.geosociety.org/qggdivision/awards/kirkbryanaward|title=Kirk Bryan Award – Quaternary Geology & Geomorphology Division|website=community.geosociety.org}}
Keanini's research is focused on molecular hydrodynamics, fluid dynamics, applied math, and statistical mechanics, with a primary interest in stochastic processes, applications of Green's function methods, and the utilization of fluid mechanics. In 1998, he published an online set of course notes in Advanced Viscous Flow which corresponded to expanded homework and exam problems developed by Stephen Morris at UC Berkeley.{{Cite web|url=https://coefs.charlotte.edu/rkeanini/megr-71148114-advanced-fluid-mechanics-3/|title=Lecture notes: Advanced Fluid Mechanics | Russ Keanini}}
Education and early career
Keanini earned his Baccalaureate degree in Chemical Engineering from the Colorado School of Mines in 1983 and pursued a Master's in Mechanical Engineering from the University of Colorado Denver in 1987. He served as a Graduate Student Researcher at the National Aeronautics and Space Administration (NASA) Ames Research Center from 1988 to 1989 and was a Member of the US Navy from 1984 to 1990. In 1992, he received his Ph.D. in Mechanical Engineering from the University of California at Berkeley with a thesis titled "Numerical and analytical studies of phase change processes".{{cite thesis |last1=Keanini |first1=Russell Guy |date=1992 |title=Numerical and analytical studies of phase change processes |id={{ProQuest|304052729}} |oclc=892822306 }}{{primary source inline|date=July 2023}}
Career
Following his Ph.D., Keanini began his academic career as an assistant professor of Mechanical Engineering in 1992 at the University of North Carolina at Charlotte and was promoted to associate professor in 1998. Since 2007, he has been serving as a professor of Mechanical Engineering and Engineering Science at the William States Lee College of Engineering of the University of North Carolina Charlotte.
At the NASA Marshall Space Flight Center, Keanini focused on studying altitude-dependent turbulent boundary layer separation and random rocket dynamics, particularly in Saturn-V-scale rockets. During his time at the Alcoa Technical Center in Pittsburgh, he developed theoretical and inverse methods for predicting and monitoring heat transfer during high-speed metal rolling processes.{{cite journal |last1=Johnson |first1=R.E. |last2=Keanini |first2=R.G. |title=An asymptotic model of work roll heat transfer in strip rolling |journal=International Journal of Heat and Mass Transfer |date=March 1998 |volume=41 |issue=6–7 |pages=871–879 |doi=10.1016/S0017-9310(97)00175-0 |bibcode=1998IJHMT..41..871J }}{{primary source inline|date=July 2023}}{{cite journal |last1=Keanini |first1=Russell G. |title=Inverse estimation of surface heat flux distributions during high speed rolling using remote thermal measurements |journal=International Journal of Heat and Mass Transfer |date=January 1998 |volume=41 |issue=2 |pages=275–285 |doi=10.1016/S0017-9310(97)00144-0 |bibcode=1998IJHMT..41..275K }}{{primary source inline|date=July 2023}} Additionally, while working at the Center for Marine Science Research at UNC Wilmington, he created a predictive model to analyze circulation-driven nutrient/mass transfer in chicken embryos' bones.{{cite journal |last1=Keanini |first1=Russell G. |last2=Roer |first2=Robert D. |last3=Dillaman |first3=Richard M. |title=A theoretical model of circulatory interstitial fluid flow and species transport within porous cortical bone |journal=Journal of Biomechanics |date=August 1995 |volume=28 |issue=8 |pages=901–914 |doi=10.1016/0021-9290(94)00157-Y |pmid=7673258 }}{{primary source inline|date=July 2023}} Moreover, at the Center for Precision Metrology, UNC Charlotte, he modeled high-precision packed-bed thermal attenuators/controllers{{cite journal |last1=Lawton |first1=Kevin M. |last2=Patterson |first2=Steven R. |last3=Keanini |first3=Russell G. |title=Direct contact packed bed thermal gradient attenuators: Theoretical analysis and experimental observations |journal=Review of Scientific Instruments |date=1 May 2003 |volume=74 |issue=5 |pages=2886–2893 |doi=10.1063/1.1564279 |bibcode=2003RScI...74.2886L }}{{primary source inline|date=July 2023}} and applied PIV velocimetry to vibratory finishing processes.{{cite journal |last1=Fleischhauer |first1=E. |last2=Azimi |first2=F. |last3=Tkacik |first3=P. |last4=Keanini |first4=R. |last5=Mullany |first5=B. |title=Application of particle image velocimetry (PIV) to vibrational finishing |journal=Journal of Materials Processing Technology |date=March 2016 |volume=229 |pages=322–328 |doi=10.1016/j.jmatprotec.2015.09.017 }}{{primary source inline|date=July 2023}}
Research
Keanini's research interests span the fields of fundamental fluid physics and math problems, with a particular interest in physical, analytical, and computational modeling of molecular dynamics in polar and non-polar liquids.
=Physical modeling of single molecule dynamics in nonpolar liquids=
Keanini's research focused on the liquid state and the dynamics of single molecules occurring on timescales ranging from microseconds to femtoseconds (10−6 to 10−15). Employing nonequilibrium statistical and quantum mechanical arguments, he revealed two significant findings: the emergence of viscosity and the occurrence of self-diffusive molecular hopping driven by phonons in liquids. This work provided an explanation of these phenomena. Furthermore, he developed and tested a self-consistent Langevin model for describing the dynamics of single molecules in the liquid state.{{cite journal |last1=Keanini |first1=Russell G. |last2=Dahlberg |first2=Jerry |last3=Tkacik |first3=Peter T. |title=On the physical mechanisms underlying single molecule dynamics in simple liquids |journal=Scientific Reports |date=28 January 2021 |volume=11 |issue=1 |page=2528 |doi=10.1038/s41598-021-82112-8 |pmid=33510369 |pmc=7843658 }}{{primary source inline|date=July 2023}}{{cite web|url=https://researchoutreach.org/articles/molecular-hopping-solid-like-liquids-self-diffusion-viscosity/|title=Molecular hopping in solid-like liquids: Understanding the self-diffusion and viscosity of liquid molecules|date=3 September 2021 }}
= Bootstrap technique for (stochastically) estimating Green’s function=
Keanini has worked on the application of Green's function and introduced a new technique for solving physical problems governed by linear partial differential equations, including Schrödinger's equation (quantum mechanics), Maxwell's equations (classical electromagnetism), and the linearized Navier-Stokes equations (fluid mechanics). He addressed the central limitation associated with Green's function techniques by employing stochastic processes, specifically random walkers, to estimate highly accurate and non-problem-specific Green functions.{{cite journal |last1=Keanini |first1=Russell G. |last2=Dahlberg |first2=Jerry |last3=Brown |first3=Philip |last4=Morovati |first4=Mehdi |last5=Moradi |first5=Hamidreza |last6=Jacobs |first6=Donald |last7=Tkacik |first7=Peter T. |title=Stochastic estimation of Green's functions with application to diffusion and advection-diffusion-reaction problems |journal=Applied Mathematics and Computation |date=November 2023 |volume=457 |pages=128186 |doi=10.1016/j.amc.2023.128186 |arxiv=2206.02521 }}{{primary source inline|date=July 2023}} At the beginning of the project, he presented three stochastic-based methods for solving unsteady scalar transport problems in bounded, single-phase domains, encompassing Dirichlet, Neumann, and/or mixed initial boundary value problems.{{cite journal |last1=Keanini |first1=R.G |title=Random walk methods for scalar transport problems subject to Dirichlet, Neumann and mixed boundary conditions |journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences |date=8 February 2007 |volume=463 |issue=2078 |pages=435–460 |doi=10.1098/rspa.2006.1769 |bibcode=2007RSPSA.463..435K |s2cid=2265032 }}{{primary source inline|date=July 2023}} He then proposed a framework that integrated Green's function (GF) methods with techniques from the theory of stochastic processes which enabled the resolution of nonlinear evolution problems.{{cite journal |last1=Keanini |first1=R.G. |title=Green's function-stochastic methods framework for probing nonlinear evolution problems: Burger's equation, the nonlinear Schrödinger's equation, and hydrodynamic organization of near-molecular-scale vorticity |journal=Annals of Physics |date=April 2011 |volume=326 |issue=4 |pages=1002–1031 |doi=10.1016/j.aop.2010.12.004 |arxiv=1007.2125 |bibcode=2011AnPhy.326.1002K |s2cid=119658044 }}{{primary source inline|date=July 2023}}
=Development of an accessible, dynamically equivalent molecular hydrodynamic analog=
Keanini carried out a series of experimental and theoretical studies at UNC Charlotte to develop experimentally accessible analogs of liquid state molecular hydrodynamic systems and demonstrated that vibrated beds of high restitution (ceramic) grains – from short interparticle collision time and length scales to long, multiparticle flow scales – are dynamically equivalent to dense (liquid state) molecular hydrodynamic system.{{cite journal |last1=Keanini |first1=R. G. |last2=Tkacik |first2=Peter T. |last3=Fleischhauer |first3=Eric |last4=Shahinian |first4=Hossein |last5=Sholar |first5=Jodie |last6=Azimi |first6=Farzad |last7=Mullany |first7=Brid |title=Macroscopic liquid-state molecular hydrodynamics |journal=Scientific Reports |date=31 January 2017 |volume=7 |issue=1 |page=41658 |doi=10.1038/srep41658 |pmid=28139711 |pmc=5282555 |bibcode=2017NatSR...741658K }}{{primary source inline|date=July 2023}} He explored the potential{{cite journal |last1=Mullany |first1=B. |last2=Shahinian |first2=H. |last3=Navare |first3=J. |last4=Azimi |first4=F. |last5=Fleischhauer |first5=E. |last6=Tkacik |first6=P. |last7=Keanini |first7=R. |title=The application of computational fluid dynamics to vibratory finishing processes |journal=CIRP Annals |date=2017 |volume=66 |issue=1 |pages=309–312 |doi=10.1016/j.cirp.2017.04.087 |doi-access=free }}{{primary source inline|date=July 2023}} and use of particle image velocimetry (PIV) as a diagnostic tool for studying fundamental features associated with vibrational finishing and for developing system-independent control strategies. In addition, he presented a technique to measure the kinematic viscosity of granular flows using a low Reynolds number cylinder drag experiment.{{cite journal |last1=Fleischhauer |first1=Eric |last2=Dahlberg |first2=Jerry L |last3=Solomon |first3=Jason M |last4=Keanini |first4=Russell G |last5=Tkacik |first5=Peter T |title=Kinematic viscosity measurement of granular flows via low Reynolds number cylinder drag experiment |journal=Measurement Science and Technology |date=1 May 2019 |volume=30 |issue=5 |pages=055904 |doi=10.1088/1361-6501/ab08cf |bibcode=2019MeScT..30e5904F |s2cid=128337952 }}{{primary source inline|date=July 2023}}
=Other contributions=
Keanini has also contributed towards the physical modeling of environmentally-driven fracture processes in rocks and the development of computational and theoretical, direct and inverse models of various materials processing operations.{{cite journal |last1=Eppes |first1=Martha Cary |last2=Aldred |first2=Jennifer |last3=Berberich |first3=Samantha |last4=Dahlquist |first4=Maxwell P. |last5=Evans |first5=Sarah G. |last6=Keanini |first6=Russell |last7=Moser |first7=Faye |last8=Morovati |first8=Mehdi |last9=Porson |first9=Steven |last10=Rasmussen |first10=Monica |last11=Rinehart |first11=Alex |last12=Shaanan |first12=Uri |title=Standardized field methods for fracture-focused surface processes research |date=12 December 2022 |doi=10.5194/esurf-2022-61 |doi-access=free }}{{primary source inline|date=July 2023}}{{cite journal |last1=Eppes |first1=Martha-Cary |last2=Heap |first2=Mike |last3=Baud |first3=Patrick |last4=Bonami |first4=Thomas |last5=Dahlquist |first5=Max |last6=Keanini |first6=Russell |last7=LaCroix |first7=Cyril |last8=Rasmussen |first8=Monica |last9=Rinehart |first9=Alex |last10=El Alaoui |first10=Youness |last11=Windenberger |first11=Adrien |title=Testing natural fracture growth-fracturing resilience feedbacks in rock |journal=Egu General Assembly Conference Abstracts |date=15 May 2023 |doi=10.5194/egusphere-egu23-5158 |bibcode=2023EGUGA..25.5158E |doi-access=free }}{{primary source inline|date=July 2023}} Since 1992, his research has focused on the analytical modeling of fluid flow problems, including secondary streaming flow, thermocapillary and buoyancy driven flow in fluid collars,{{cite journal |last1=Keanini |first1=Russell G. |title=Thermocapillary, buoyancy and shear-driven flow within thin annular fluid collars |journal=International Journal of Heat and Mass Transfer |date=July 1994 |volume=37 |issue=11 |pages=1579–1591 |doi=10.1016/0017-9310(94)90174-0 |bibcode=1994IJHMT..37.1579K }}{{primary source inline|date=July 2023}} linear and nonlinear waves on cylindrical menisci,{{Cite web|url=https://coefs.charlotte.edu/rkeanini/files/2012/05/wavesfejam.pdf|title=Linear and nonlinear waves on coating entrance menisci Abstract}}{{full citation needed|date=July 2023}}{{primary source inline|date=July 2023}} supersonic and hypersonic flows in various geometries, shock train evolution in supersonic nozzles,{{cite book |last1=Keanini |first1=R. G. |last2=Nortey |first2=T. D. |last3=Thorsett-Hill |first3=Karen |last4=Srivastava |first4=N. |last5=Hellman |first5=Sam |last6=Tkacik |first6=P. T. |last7=Knight |first7=P. Douglas |chapter=Shock-Induced Turbulent Boundary Layer Separation in Over-Expanded Rocket Nozzles: Physics, Models, Random Side Loads, and the Diffusive Character of Stochastic Rocket Ascent |title=Mass Transfer – Advanced Aspects |year=2011 |doi=10.5772/22597 |isbn=978-953-307-636-2 |s2cid=51857619 }}{{primary source inline|date=July 2023}}{{predatory}} and turbulent boundary layer separation in rocket nozzles as well as mass and heat transfer problems. He also worked on computational optimization for planning noninvasive cryosurgeries.{{cite journal |last1=Keanini |first1=R. G. |last2=Rubinsky |first2=B. |title=Optimization of Multiprobe Cryosurgery |journal=Journal of Heat Transfer |date=1 November 1992 |volume=114 |issue=4 |pages=796–801 |doi=10.1115/1.2911885 }}{{primary source inline|date=July 2023}}
Awards and honors
Selected articles
- {{cite journal |last1=Ortega |first1=Joseph K.E. |last2=Zehr |first2=Edwin G. |last3=Keanini |first3=Russell G. |title=In vivo creep and stress relaxation experiments to determine the wall extensibility and yield threshold for the sporangiophores of phycomyces |journal=Biophysical Journal |date=September 1989 |volume=56 |issue=3 |pages=465–475 |doi=10.1016/S0006-3495(89)82694-3 |pmid=19431745 |pmc=1280500 |bibcode=1989BpJ....56..465O }}
- {{cite journal |last1=Keanini |first1=R. G. |last2=Rubinsky |first2=B. |date=1990 |title=Plasma arc welding under normal and zero gravity |journal=Welding Journal |volume=69 |issue=6 |pages=41–50 |url={{GBurl|5_tKAQAAIAAJ}} }}
- {{cite journal |last1=Keanini |first1=R. G. |last2=Rubinsky |first2=B. |title=Optimization of Multiprobe Cryosurgery |journal=Journal of Heat Transfer |date=1 November 1992 |volume=114 |issue=4 |pages=796–801 |doi=10.1115/1.2911885 }}
- {{cite journal |last1=Keanini |first1=Russell G. |last2=Rubinsky |first2=Boris |title=Three-dimensional simulation of the plasma arc welding process |journal=International Journal of Heat and Mass Transfer |date=September 1993 |volume=36 |issue=13 |pages=3283–3298 |doi=10.1016/0017-9310(93)90011-T |bibcode=1993IJHMT..36.3283K }}
- {{cite journal |last1=Ling |first1=Xianwu |last2=Keanini |first2=Russell G. |last3=Cherukuri |first3=H. P. |title=A non-iterative finite element method for inverse heat conduction problems |journal=International Journal for Numerical Methods in Engineering |date=7 March 2003 |volume=56 |issue=9 |pages=1315–1334 |doi=10.1002/nme.614 |bibcode=2003IJNME..56.1315L |s2cid=123075946 }}
- {{cite journal |last1=Eppes |first1=Martha-Cary |last2=Keanini |first2=Russell |title=Mechanical weathering and rock erosion by climate-dependent subcritical cracking |journal=Reviews of Geophysics |date=June 2017 |volume=55 |issue=2 |pages=470–508 |doi=10.1002/2017RG000557 |bibcode=2017RvGeo..55..470E |s2cid=134803203 |doi-access=free }}
References
{{reflist}}
{{authority control}}
{{DEFAULTSORT:Keanini, Russell}}
Category:21st-century American physicists
Category:American mechanical engineers
Category:American applied mathematicians
Category:Native Hawaiian people
Category:University of North Carolina at Charlotte faculty
Category:University of Colorado Denver alumni
Category:University of California, Berkeley alumni
Category:Colorado School of Mines alumni
Category:United States Navy sailors