SETD2
{{Short description|Protein-coding gene in the species Homo sapiens}}
{{Infobox_gene}}
SET domain containing 2 is an enzyme that in humans is encoded by the SETD2 gene.{{cite journal | vauthors = Sun XJ, Wei J, Wu XY, Hu M, Wang L, Wang HH, Zhang QH, Chen SJ, Huang QH, Chen Z | title = Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase | journal = J Biol Chem | volume = 280 | issue = 42 | pages = 35261–71 |date=Oct 2005 | pmid = 16118227 | doi = 10.1074/jbc.M504012200 | doi-access = free }}{{cite journal | vauthors = Rega S, Stiewe T, Chang DI, Pollmeier B, Esche H, Bardenheuer W, Marquitan G, Putzer BM | title = Identification of the full-length huntingtin- interacting protein p231HBP/HYPB as a DNA-binding factor | journal = Mol Cell Neurosci | volume = 18 | issue = 1 | pages = 68–79 |date=Jul 2001 | pmid = 11461154 | doi = 10.1006/mcne.2001.1004 | s2cid = 31658986 }}{{cite web | title = Entrez Gene: SETD2 SET domain containing 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=29072}}
Function
SETD2 protein is a histone methyltransferase that is specific for lysine-36 of histone H3, and methylation of this residue is associated with active chromatin. This protein also contains a novel transcriptional activation domain and has been found associated with hyperphosphorylated RNA polymerase II.
The trimethylation of lysine-36 of histone H3 (H3K36me3) is required in human cells for homologous recombinational repair and genome stability.{{cite journal |vauthors=Pfister SX, Ahrabi S, Zalmas LP, Sarkar S, Aymard F, Bachrati CZ, Helleday T, Legube G, La Thangue NB, Porter AC, Humphrey TC |title=SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability |journal=Cell Rep |volume=7 |issue=6 |pages=2006–18 |date=June 2014 |pmid=24931610 |pmc=4074340 |doi=10.1016/j.celrep.2014.05.026 }} Depletion of SETD2 increases the frequency of deletion mutations that arise by the alternative DNA repair process of microhomology-mediated end joining.
Clinical significance
The SETD2 gene is located on the short arm of chromosome 3 and has been shown to play a tumour suppressor role in human cancer.{{cite journal | vauthors = Al Sarakbi W, Sasi W, Jiang WG, Roberts T, Newbold RF, Mokbel K | author6-link = kefah Mokbel | title = The mRNA expression of SETD2 in human breast cancer: correlation with clinico-pathological parameters | journal = BMC Cancer | volume = 9 | pages = 290 | year = 2009 | pmid = 19698110 | pmc = 3087337 | doi = 10.1186/1471-2407-9-290 | doi-access = free }}
Interactions
SETD2 has been shown to interact with Huntingtin.{{cite journal | vauthors = Faber PW, Barnes GT, Srinidhi J, Chen J, Gusella JF, MacDonald ME | title = Huntingtin interacts with a family of WW domain proteins | journal = Hum. Mol. Genet. | volume = 7 | issue = 9 | pages = 1463–74 |date=September 1998 | pmid = 9700202 | doi = 10.1093/hmg/7.9.1463 | doi-access = free }} Huntington's disease (HD), a neurodegenerative disorder characterized by loss of striatal neurons, is caused by an expansion of a polyglutamine tract in the HD protein huntingtin. SETD2 belongs to a class of huntingtin interacting proteins characterized by WW motifs.
References
{{reflist}}
Further reading
{{refbegin | 2}}
- {{cite journal |vauthors=Faber PW, Barnes GT, Srinidhi J, etal |title=Huntingtin interacts with a family of WW domain proteins |journal=Hum. Mol. Genet. |volume=7 |issue= 9 |pages= 1463–74 |year= 1998 |pmid= 9700202 |doi=10.1093/hmg/7.9.1463 |doi-access=free }}
- {{cite journal |vauthors=Passani LA, Bedford MT, Faber PW, etal |title=Huntingtin's WW domain partners in Huntington's disease post-mortem brain fulfill genetic criteria for direct involvement in Huntington's disease pathogenesis |journal=Hum. Mol. Genet. |volume=9 |issue= 14 |pages= 2175–82 |year= 2000 |pmid= 10958656 |doi=10.1093/hmg/9.14.2175 |doi-access=free }}
- {{cite journal |vauthors=Zhang QH, Ye M, Wu XY, etal |title=Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells |journal=Genome Res. |volume=10 |issue= 10 |pages= 1546–60 |year= 2001 |pmid= 11042152 |doi=10.1101/gr.140200 | pmc=310934 }}
- {{cite journal |vauthors=Nagase T, Kikuno R, Hattori A, etal |title=Prediction of the coding sequences of unidentified human genes. XIX. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro |journal=DNA Res. |volume=7 |issue= 6 |pages= 347–55 |year= 2001 |pmid= 11214970 |doi=10.1093/dnares/7.6.347 |doi-access=free }}
- {{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |bibcode=2002PNAS...9916899M |doi-access=free }}
- {{cite journal |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |doi-access= free }}
- {{cite journal |vauthors=Beausoleil SA, Jedrychowski M, Schwartz D, etal |title=Large-scale characterization of HeLa cell nuclear phosphoproteins |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue= 33 |pages= 12130–5 |year= 2004 |pmid= 15302935 |doi= 10.1073/pnas.0404720101 | pmc=514446 |bibcode=2004PNAS..10112130B |doi-access=free }}
- {{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
- {{cite journal |vauthors=Li M, Phatnani HP, Guan Z, etal |title=Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1 |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=102 |issue= 49 |pages= 17636–41 |year= 2006 |pmid= 16314571 |doi= 10.1073/pnas.0506350102 | pmc=1308900 |doi-access=free }}
- {{cite journal |vauthors=Lim J, Hao T, Shaw C, etal |title=A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration |journal=Cell |volume=125 |issue= 4 |pages= 801–14 |year= 2006 |pmid= 16713569 |doi= 10.1016/j.cell.2006.03.032 |s2cid=13709685 |doi-access=free }}
- {{cite journal |vauthors=Olsen JV, Blagoev B, Gnad F, etal |title=Global, in vivo, and site-specific phosphorylation dynamics in signaling networks |journal=Cell |volume=127 |issue= 3 |pages= 635–48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 |s2cid=7827573 |doi-access=free }}
{{refend}}
{{PDB Gallery|geneid=29072}}
{{gene-3-stub}}