Salidroside
{{chembox
| Verifiedfields = changed
| Watchedfields = changed
| verifiedrevid = 405909373
| ImageFile=Salidroside.svg
| ImageSize=200px
| IUPACName=2-(4-Hydroxyphenyl)ethyl β-D-glucopyranoside
| SystematicName=(2R,3S,4S,5R,6R)-2-(Hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethoxy]oxane-3,4,5-triol
| OtherNames=Salidroside
Rhodioloside
Tyrosol glucoside
|Section1={{Chembox Identifiers
| CASNo_Ref = {{cascite|correct|??}}
| CASNo=10338-51-9
| UNII_Ref = {{fdacite|changed|FDA}}
| UNII = M983H6N1S9
| PubChem=159278
| ChEMBL_Ref = {{ebicite|changed|EBI}}
| ChEMBL = 465208
| ChemSpiderID_Ref = {{chemspidercite|changed|chemspider}}
| ChemSpiderID = 140088
| InChI = 1/C14H20O7/c15-7-10-11(17)12(18)13(19)14(21-10)20-6-5-8-1-3-9(16)4-2-8/h1-4,10-19H,5-7H2/t10-,11-,12+,13-,14-/m1/s1
| InChIKey = ILRCGYURZSFMEG-RKQHYHRCBF
| StdInChI_Ref = {{stdinchicite|changed|chemspider}}
| StdInChI = 1S/C14H20O7/c15-7-10-11(17)12(18)13(19)14(21-10)20-6-5-8-1-3-9(16)4-2-8/h1-4,10-19H,5-7H2/t10-,11-,12+,13-,14-/m1/s1
| StdInChIKey_Ref = {{stdinchicite|changed|chemspider}}
| StdInChIKey = ILRCGYURZSFMEG-RKQHYHRCSA-N
| SMILES=C1=CC(=CC=C1CCO[C@H]2[C@@H]([C@H]([C@@H]([C@H](O2)CO)O)O)O)O
| MeSHName=
}}
|Section2={{Chembox Properties
| C=14 | H=20 | O=7
| Appearance=
| Density=
| MeltingPt=
| BoilingPt=
| Solubility=
}}
|Section3={{Chembox Hazards
| MainHazards=
| FlashPt=
| AutoignitionPt =
}}
}}
Salidroside (rhodioloside) is a glucoside of tyrosol found in the plant Rhodiola rosea.{{cite journal | vauthors = Mao Y, Li Y, Yao N | title = Simultaneous determination of salidroside and tyrosol in extracts of Rhodiola L. by microwave assisted extraction and high-performance liquid chromatography | journal = Journal of Pharmaceutical and Biomedical Analysis | volume = 45 | issue = 3 | pages = 510–5 | date = November 2007 | pmid = 17628386 | doi = 10.1016/j.jpba.2007.05.031 }} It has been studied, along with rosavin, as one of the potential compounds responsible for the putative antidepressant and anxiolytic actions of this plant.{{cite journal | vauthors = Perfumi M, Mattioli L | title = Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice | journal = Phytotherapy Research | volume = 21 | issue = 1 | pages = 37–43 | date = January 2007 | pmid = 17072830 | doi = 10.1002/ptr.2013 | s2cid = 46232827 | doi-access = }}{{cite journal | vauthors = Mattioli L, Funari C, Perfumi M | title = Effects of Rhodiola rosea L. extract on behavioural and physiological alterations induced by chronic mild stress in female rats | journal = Journal of Psychopharmacology | volume = 23 | issue = 2 | pages = 130–42 | date = March 2009 | pmid = 18515456 | doi = 10.1177/0269881108089872 | s2cid = 206489765 }} Salidroside may be more active than rosavin,{{cite journal | vauthors = Panossian A, Nikoyan N, Ohanyan N, Hovhannisyan A, Abrahamyan H, Gabrielyan E, Wikman G | title = Comparative study of Rhodiola preparations on behavioral despair of rats | journal = Phytomedicine | volume = 15 | issue = 1–2 | pages = 84–91 | date = January 2008 | pmid = 18054474 | doi = 10.1016/j.phymed.2007.10.003 }} even though many commercially marketed Rhodiola rosea extracts are standardized for rosavin content rather than salidroside.
Bioactivities
Salidroside was shown to improve glucose homeostasis and alleviate diabetic retinopathy in obese mice.{{Cite journal |last1=Wang |first1=Meihong |last2=Luo |first2=Lan |last3=Yao |first3=Lili |last4=Wang |first4=Caiping |last5=Jiang |first5=Ketao |last6=Liu |first6=Xiaoyu |last7=Xu |first7=Muchen |last8=Shen |first8=Ningmei |last9=Guo |first9=Shaodong |last10=Sun |first10=Cheng |last11=Yang |first11=Yumin |date=May 2016 |title=Salidroside improves glucose homeostasis in obese mice by repressing inflammation in white adipose tissues and improving leptin sensitivity in hypothalamus |journal=Scientific Reports |volume=6 |issue=1 |page=25399 |doi=10.1038/srep25399 |pmid=27145908 |bibcode=2016NatSR...625399W |issn=2045-2322|doi-access=free |pmc=4857131 }}{{Cite journal |last1=Yao |first1=Fei |last2=Jiang |first2=Xinyi |last3=Qiu |first3=Ling |last4=Peng |first4=Zixuan |last5=Zheng |first5=Wei |last6=Ding |first6=Lexi |last7=Xia |first7=Xiaobo |date=2022 |title=Long-Term Oral Administration of Salidroside Alleviates Diabetic Retinopathy in db/db Mice |journal=Frontiers in Endocrinology |volume=13 |pages=861452 |doi=10.3389/fendo.2022.861452 |issn=1664-2392 |pmc=8966089 |pmid=35370972|doi-access=free }} The antioxidant, anti-inflammatory and neuroprotective effects of salidroside have also been reported.{{Cite journal |last1=Zhong |first1=Zhi-feng |last2=Han |first2=Jing |last3=Zhang |first3=Ji-Zhou |last4=Xiao |first4=Qing |last5=Chen |first5=Jing-yan |last6=Zhang |first6=Kai |last7=Hu |first7=Juan |last8=Chen |first8=Li-dian |date=2019-12-13 |title=Neuroprotective Effects of Salidroside on Cerebral Ischemia/Reperfusion-Induced Behavioral Impairment Involves the Dopaminergic System |journal=Frontiers in Pharmacology |volume=10 |page=1433 |doi=10.3389/fphar.2019.01433 |pmid=31920641 |pmc=6923222 |issn=1663-9812|doi-access=free }}{{Cite journal |last1=Song |first1=Dan |last2=Zhao |first2=Min |last3=Feng |first3=Liuxiang |last4=Wang |first4=Pingyi |last5=Li |first5=Yimei |last6=Li |first6=Wenhua |date=October 2021 |title=Salidroside attenuates acute lung injury via inhibition of inflammatory cytokine production |journal=Biomedicine & Pharmacotherapy |volume=142 |pages=111949 |doi=10.1016/j.biopha.2021.111949 |issn=1950-6007 |pmid=34325302|doi-access=free }}{{Cite journal |last1=Ju |first1=Linjie |last2=Wen |first2=Xiaohua |last3=Wang |first3=Chunjun |last4=Wei |first4=Yingjie |last5=Peng |first5=Yunru |last6=Ding |first6=Yongfang |last7=Feng |first7=Liang |last8=Shu |first8=Luan |date=2017-10-18 |title=Salidroside, A Natural Antioxidant, Improves β-Cell Survival and Function via Activating AMPK Pathway |journal=Frontiers in Pharmacology |volume=8 |doi=10.3389/fphar.2017.00749 |pmid=29093682 |issn=1663-9812|doi-access=free |pmc=5651268 }}
Biosynthesis
The salidroside biosynthetic pathway in Rhodiola rosea was described in 2018.{{Cite journal |last1=Torrens-Spence |first1=Michael P. |last2=Pluskal |first2=Tomáš |last3=Li |first3=Fu-Shuang |last4=Carballo |first4=Valentina |last5=Weng |first5=Jing-Ke |date=2018-01-08 |title=Complete Pathway Elucidation and Heterologous Reconstitution of Rhodiola Salidroside Biosynthesis |journal=Molecular Plant |volume=11 |issue=1 |pages=205–217 |doi=10.1016/j.molp.2017.12.007 |issn=1752-9867 |pmid=29277428|doi-access=free }} Rhodiola contains a pyridoxal phosphate-dependent 4-hydroxyphenylacetaldehyde (4-HPAA) synthase that converts tyrosine to 4-HPAA, which is further reduced to tyrosol by 4-HPAA reductase. Rhodiola contains a regio-selective tyrosol:UDP-glucose 8-O-glucosyltransferase that glycosylates tyrosol to produce salidroside.