Samuelson–Berkowitz algorithm

{{Short description|Method for matrix characteristic polynomials}}

{{Expand German|Algorithmus von Samuelson-Berkowitz|date=July 2020}}

In mathematics, the Samuelson–Berkowitz algorithm efficiently computes the characteristic polynomial of an n\times n matrix whose entries may be elements of any unital commutative ring. Unlike the Faddeev–LeVerrier algorithm, it performs no divisions, so may be applied to a wider range of algebraic structures.

Description of the algorithm

The Samuelson–Berkowitz algorithm applied to a matrix A produces a vector whose entries are the coefficient of the characteristic polynomial of A. It computes this coefficients vector recursively as the product of a Toeplitz matrix and the coefficients vector an (n-1)\times(n-1) principal submatrix.

Let A_0 be an n\times n matrix partitioned so that

: A_0 = \left[ \begin{array}{c|c}

a_{1,1} & R \\ \hline

C & A_1

\end{array} \right]

The first principal submatrix of A_0 is the (n-1)\times(n-1) matrix A_1. Associate with A_0 the (n+1)\times n Toeplitz matrix T_0

defined by

: T_0 = \left[ \begin{array}{c}

1 \\

-a_{1,1}

\end{array} \right]

if A_0 is 1\times 1,

: T_0 = \left[ \begin{array}{c c}

1 & 0 \\

-a_{1,1} & 1 \\

-RC & -a_{1,1}

\end{array} \right]

if A_0 is 2\times 2,

and in general

: T_0 = \left[ \begin{array}{c c c c c}

1 & 0 & 0 & 0 & \cdots\\

-a_{1,1} & 1 & 0 & 0 & \cdots\\

-RC & -a_{1,1} & 1 & 0 & \cdots\\

-RA_1C & -RC & -a_{1,1} & 1 & \cdots\\

-RA_1^2C & -RA_1C & -RC & -a_{1,1} & \cdots\\

\vdots & \vdots & \vdots & \vdots & \ddots

\end{array} \right]

That is, all super diagonals of T_0 consist of zeros, the main diagonal consists of ones, the first subdiagonal consists of -a_{1,1} and the kth subdiagonal

consists of -RA_1^{k-2}C.

The algorithm is then applied recursively to A_1, producing the Toeplitz matrix T_1 times the characteristic polynomial of A_2, etc. Finally, the characteristic polynomial of the 1\times 1 matrix A_{n-1} is simply T_{n-1}. The Samuelson–Berkowitz algorithm then states that the vector v defined by

: v=T_0 T_1 T_2\cdots T_{n-1}

contains the coefficients of the characteristic polynomial of A_0.

Because each of the T_i may be computed independently, the algorithm is highly parallelizable.

References

  • {{cite journal |first=Stuart J. |last=Berkowitz |title=On computing the determinant in small parallel time using a small number of processors |journal=Information Processing Letters |volume=18 |issue=3 |date=30 March 1984 |pages=147–150 |doi=10.1016/0020-0190(84)90018-8}}
  • {{cite journal |last2=Cook |first2=Stephen |last1=Soltys |first1=Michael |title=The Proof Complexity of Linear Algebra |journal=Annals of Pure and Applied Logic |volume=130 |issue=1–3 |date=December 2004 |pages=277–323 |doi=10.1016/j.apal.2003.10.018 |citeseerx=10.1.1.308.6521 |url=http://prof.msoltys.com/wp-content/uploads/2015/04/soltys-cook-apal.pdf}}
  • {{cite tech report |first=Michael |last=Kerber |title=Division-Free computation of sub-resultants using Bezout matrices |id=Tech. Report MPI-I-2006-1-006 |publisher=Max-Planck-Institut für Informatik |location=Saarbrucken |date=May 2006 |url=https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_1819171 |format=PS}}

{{DEFAULTSORT:Samuelson-Berkowitz algorithm}}

Category:Linear algebra

Category:Polynomials

Category:Numerical linear algebra