Schizochytrium
{{Short description|Genus of single-celled organisms}}
{{Italic title}}
{{Automatic taxobox
| taxon = Schizochytrium
| authority = S. Goldst. & Belsky emend. T. Booth & C. E. Mill. {{cite journal |author1=Rinka Yokoyama |author2=Daiske Honda |name-list-style=amp |year=2007 |title=Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. |journal=Mycoscience |volume=48 |issue=4 |pages=199–211 |doi=10.1007/s10267-006-0362-0|s2cid=86418053 }}
| subdivision_ranks = Species
| subdivision = S. aggregatum{{Cite web|url=https://www.uniprot.org/taxonomy/4772|title=Schizochytrium|website=www.uniprot.org}}
S. limacinum{{cite journal|last1=Honda|first1=Daiske|last2=Yokochi|first2=Toshihiro|last3=Nakahara|first3=Toro|last4=Erata|first4=Mayumi|last5=Higashihara|first5=Takanori|title=Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean|journal=Mycological Research|date=April 1998|volume=102|issue=4|pages=439–448|doi=10.1017/S0953756297005170}}
}}
Schizochytrium is a genus of unicellular eukaryote in the family Thraustochytriaceae, which are found in coastal marine habitats. They are assigned to the Stramenopiles (heterokonts), a group which also contains kelp and various microalgae.
Lifecycle
Several stages occur in its lifecycle. The feeding form has a stiff, rounded body with cellular extensions used in feeding. Cells can transform into mobile flagellated cells with stiff tripartite hairs typical of the Stramenopiles. Cells can also grow and divide to form a cluster of cells which may become a sorus that produces biflagellated zoospores.
Relation to humans
File:Vegan omega-3 supplements.jpg supplements for human consumption]]
Certain species produce large amounts of docosahexaenoic acid (DHA){{cite journal|year=2004|title=Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei|journal=Journal of Agricultural and Food Chemistry|volume=52|issue=5|pages=1196–1200|doi=10.1021/jf035004c|pmid=14995120|author=Yue Jiang|author2=King-Wai Fan|author3=Raymond Tsz-Yeung Wong|author4=Feng Chen|name-list-style=amp}} and are grown commercially for production of algae oil for animal feeds, biomass, biofuels and direct human consumption in supplements and additives.{{cite news|last1=Whoriskey|first1=Peter|title=How millions of cartons of 'organic' milk contain an oil brewed in industrial vats of algae|url=https://www.washingtonpost.com/news/wonk/wp/2017/06/05/how-millions-of-cartons-of-organic-milk-contain-an-oil-brewed-in-industrial-vats-of-algae/|access-date=9 June 2017|newspaper=The Washington Post|date=5 June 2017}}
In 2016, juvenile Nile tilapia were given a feed containing dried Schizochytrium in place of fish oil. When compared to a control group raised on regular feed, they exhibited higher weight gain and better feed conversion, and their flesh was higher in omega-3 fatty acids.{{Cite web|url=http://www.gizmag.com/microalgae-fish-oil/43707|title=Scientists take the fish out of fish food|last=Coxworth|first=Ben|date=June 6, 2016|website=www.gizmag.com|access-date=2016-06-08}}{{Cite journal|last1=Sarker|first1=Pallab K.|last2=Kapuscinski|first2=Anne R.|last3=Lanois|first3=Alison J.|last4=Livesey|first4=Erin D.|last5=Bernhard|first5=Katie P.|last6=Coley|first6=Mariah L.|date=2016-06-03|title=Towards Sustainable Aquafeeds: Complete Substitution of Fish Oil with Marine Microalga Schizochytrium sp. Improves Growth and Fatty Acid Deposition in Juvenile Nile Tilapia ( Oreochromis niloticus )|journal=PLOS ONE|volume=11|issue=6|pages=e0156684|doi=10.1371/journal.pone.0156684|issn=1932-6203|pmid=27258552|pmc=4892564|bibcode=2016PLoSO..1156684S|doi-access=free}} A 2020 study showed similar results and combined the feed with Nannochloropsis oculata for an entirely fish-free feed.{{cite news |title=Research breakthrough achieves fish-free aquaculture feed that raises key standards |url=https://phys.org/news/2020-11-breakthrough-fish-free-aquaculture-key-standards.html |access-date=9 December 2020 |work=phys.org |language=en}}{{cite journal |last1=Sarker |first1=Pallab K. |last2=Kapuscinski |first2=Anne R. |last3=McKuin |first3=Brandi |last4=Fitzgerald |first4=Devin S. |last5=Nash |first5=Hannah M. |last6=Greenwood |first6=Connor |title=Microalgae-blend tilapia feed eliminates fishmeal and fish oil, improves growth, and is cost viable |journal=Scientific Reports |date=12 November 2020 |volume=10 |issue=1 |pages=19328 |doi=10.1038/s41598-020-75289-x |pmid=33184333 |pmc=7665073 |bibcode=2020NatSR..1019328S |url=|language=en |issn=2045-2322}} 50px Available under [https://creativecommons.org/licenses/by/4.0/ CC BY 4.0].
DHA synthesis in ''Schizochytrium''
DHA synthesis in Schizochytrium does not involve membrane-bound desaturases or fatty acid elongation enzymes such as those described for other eukaryotes.{{Cite journal|last1=Metz|first1=James G.|last2=Roessler|first2=Paul|last3=Facciotti|first3=Daniel|last4=Levering|first4=Charlene|last5=Dittrich|first5=Franziska|last6=Lassner|first6=Michael|last7=Valentine|first7=Ray|last8=Lardizabal|first8=Kathryn|last9=Domergue|first9=Frederic|date=2001-07-13|title=Production of Polyunsaturated Fatty Acids by Polyketide Synthases in Both Prokaryotes and Eukaryotes|journal=Science|language=en|volume=293|issue=5528|pages=290–293|doi=10.1126/science.1059593|issn=0036-8075|pmid=11452122|s2cid=9125016}}{{Cite journal|last1=Matsuda|first1=Takanori|last2=Sakaguchi|first2=Keishi|last3=Hamaguchi|first3=Rie|last4=Kobayashi|first4=Takumi|last5=Abe|first5=Eriko|last6=Hama|first6=Yoichiro|last7=Hayashi|first7=Masahiro|last8=Honda|first8=Daiske|last9=Okita|first9=Yuji|date=2012-06-01|title=Analysis of Δ12-fatty acid desaturase function revealed that two distinct pathways are active for the synthesis of PUFAs in T. aureum ATCC 34304|journal=Journal of Lipid Research|language=en|volume=53|issue=6|pages=1210–1222|doi=10.1194/jlr.M024935 |doi-access=free |issn=0022-2275|pmid=22368282|pmc=3351828}} Instead it is thought that DHA synthesis in Schizochytrium occurs via a Polyketide synthase (PKS)-based pathway, although the primary structures of the Polyketide {{not a typo|synthases}} do not conform to any known class of PKS proteins.{{Cite journal|last1=Huang|first1=Jianzhong|last2=Jiang|first2=Xianzhang|last3=Zhang|first3=Xiaowei|last4=Chen|first4=Weihua|last5=Tian|first5=Baoyu|last6=Shu|first6=Zhengyu|last7=Hu|first7=Songnian|title=Expressed sequence tag analysis of marine fungus Schizochytrium producing docosahexaenoic acid|journal=Journal of Biotechnology|volume=138|issue=1–2|pages=9–16|doi=10.1016/j.jbiotec.2008.07.1994|pmid=18755227|year=2008}} Homology between Shewanella and Schizochytrium PKS genes suggests that the genes involved in this pathway underwent lateral gene transfer.
References
{{Reflist}}
{{Taxonbar|from=Q16992463}}
{{Heterokont-stub}}